Every few years, a new material with unique properties emerges and fascinates the scientific community, typical recent examples being high-temperature superconductors and carbon nanotubes. Graphene is the latest sensation with unusual properties, such as half-integer quantum Hall effect and ballistic electron transport. This two-dimensional material which is the parent of all graphitic carbon forms is strictly expected to comprise a single layer, but there is considerable interest in investigating two-layer and few-layer graphenes as well. Synthesis and characterization of graphenes pose challenges, but there has been considerable progress in the last year or so. Herein, we present the status of graphene research which includes aspects related to synthesis, characterization, structure, and properties.
The pan-cancer analysis of whole genomes The expansion of whole-genome sequencing studies from individual ICGC and TCGA working groups presented the opportunity to undertake a meta-analysis of genomic features across tumour types. To achieve this, the PCAWG Consortium was established. A Technical Working Group implemented the informatics analyses by aggregating the raw sequencing data from different working groups that studied individual tumour types, aligning the sequences to the human genome and delivering a set of high-quality somatic mutation calls for downstream analysis (Extended Data Fig. 1). Given the recent meta-analysis
The application of liposomes to assist drug delivery has already had a major impact on many biomedical areas. They have been shown to be beneficial for stabilizing therapeutic compounds, overcoming obstacles to cellular and tissue uptake, and improving biodistribution of compounds to target sites in vivo. This enables effective delivery of encapsulated compounds to target sites while minimizing systemic toxicity. Liposomes present as an attractive delivery system due to their flexible physicochemical and biophysical properties, which allow easy manipulation to address different delivery considerations. Despite considerable research in the last 50 years and the plethora of positive results in preclinical studies, the clinical translation of liposome assisted drug delivery platforms has progressed incrementally. In this review, we will discuss the advances in liposome assisted drug delivery, biological challenges that still remain, and current clinical and experimental use of liposomes for biomedical applications. The translational obstacles of liposomal technology will also be presented.
High-grade serous ovarian cancer (HGSOC) accounts for 70-80% of ovarian cancer deaths, and overall survival has not changed significantly for several decades. In this Opinion article, we outline a set of research priorities that we believe will reduce incidence and improve outcomes for women with this disease. This ‘roadmap’ for HGSOC was determined after extensive discussions at an Ovarian Cancer Action meeting in January 2015.
Strong electron-phonon interaction which limits electronic mobility of semiconductors can also have significant effects on phonon frequencies. The latter is the key to the use of Raman spectroscopy for nondestructive characterization of doping in graphene-based devices. Using in-situ Raman scattering from single layer MoS2 electrochemically top-gated field effect transistor (FET), we show softening and broadening of A1g phonon with electron doping whereas the other Raman active E 1 2g mode remains essentially inert. Confirming these results with first-principles density functional theory based calculations, we use group theoretical arguments to explain why A1g mode specifically exhibits a strong sensitivity to electron doping. Our work opens up the use of Raman spectroscopy in probing the level of doping in single layer MoS2-based FETs, which have a high on-off ratio and are of enormous technological significance.PACS numbers: 78.30.-j Discovery of graphene 1 stimulated an intense research activity due to interesting fundamental phenomena it exhibits as well as the techonological promise it holds in a broad range of applications ranging from sensors to nanoelectronics. Vanishing bandgap of a single layer graphene is a sort of a limitation in developing a graphene-based field effect transistor with a high on/off ratio. This has spurred efforts to modify graphene to open up a gap and towards development of other two dimensional materials like MoS 2 , WS 2 and boron nitride (BN), both experimentally and theoretically. Avenues to open up gap through modification of graphene include quantum confinement in nanoribbons 2 , surface functionalization 3 , applying electric field in the bilayer 4,5 , deposition of graphene on other substrates like BN 6,7 , and B or N substitutional doping 8 , which require fine control over the procedure of synthesis.In contast to graphene, single layer MoS 2 consisting of a hexagonal planar lattice of Mo atoms sandwiched between two similar lattices of S atoms (S-Mo-S structure) with intralayer covalent bonding is a semiconductor with a direct band gap of ∼ 1.8 eV, and is quite promising for FET devices with a high on-off ratio. It has been shown that the luminescence quantum yield of monolayer MoS 2 is higher than its bulk counterpart 9,10 .Recently a monolayer MoS 2 transistor 11 has been shown to exhibit an on-off ratio of ∼10 8 and electron mobility of ∼200 cm 2 /V-sec. These values are comparable to silicon based devices and make MoS 2 based devices worth exploring further. It is known that in a field effect transistor, carrier mobility is limited by scattering from phonons and the maximum current is controlled by hot phonons. Both these issues in a FET depend on the electron-phonon coupling (EPC). Raman spectroscopy has been very effective to probe EPC for single 12-14 and bilayer graphene 15-17 transistors by investigating the renormalization of the G and 2D modes as a function of carrier density.Recent layer-dependent Raman studies of single and few layers of MoS 2 18 have shown th...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.