The main objective of this atmospheric study was to determine the major sources of PM1 (particles having aerodynamic diameter <1.0 μm) within and near the city of Kanpur, in the Indo-Gangetic Plain. Day and night, 10 h long each, filter-based aerosol samples were collected for 4 months (November 2009 to February 2010) throughout the winter season. These samples were subjected to gravimetric and quantitative chemical analyses for determining water-soluble ions (NH4 (+), F(-), Cl(-), NO3 (-), and SO4 (2-)) using an ion chromatograph and trace elements using an inductively coupled plasma-optical emission spectrometer. The mean PM1 mass concentrations were recorded as 114 ± 71 μg/m(3) (day) and 143 ± 86 μg/m(3) (night), respectively. A significantly higher diurnal contribution of ions (NH4 (+), F(-), Cl(-), NO3 (-), and SO4 (2-)) in PM1 mass was observed during the fog-affected days and nights throughout the winter season, for which the average values were recorded as 38.09 ± 13.39 % (day) and 34.98 ± 12.59 % (night), respectively, of the total PM1 mass. This chemical dataset was then used in a source-receptor model, UNMIX, and the model results are described in detail. UNMIX provided a maximum number of five source factors, including crustal material, composite vehicle, secondary aerosol, coal combustion, and iron/steel production and metallurgical industries, as the dominant air pollution sources for this study.
This study presents the concentration of submicron aerosol (PM) collected during November, 2009 to March, 2010 at two road sites near the Indian Institute of Technology Delhi campus. In winter, PM composed 83% of PM indicating the dominance of combustion activity-generated particles. Principal component analysis (PCA) proved secondary aerosol formation as a dominant process in enhancing aerosol concentration at a receptor site along with biomass burning, vehicle exhaust, road dust, engine and tire tear wear, and secondary ammonia. The non-carcinogenic and excess cancer risk for adults and children were estimated for trace element data set available for road site and at elevated site from another parallel work. The decrease in average hazard quotient (HQ) for children and adults was estimated in following order: Mn > Cr > Ni > Pb > Zn > Cu both at road and elevated site. For children, the mean HQs were observed in safe level for Cu, Ni, Zn, and Pb; however, values exceeded safe limit for Cr and Mn at road site. The average highest hazard index values for children and adults were estimated as 22 and 10, respectively, for road site and 7 and 3 for elevated site. The road site average excess cancer risk (ECR) risk of Cr and Ni was close to tolerable limit (10) for adults and it was 13-16 times higher than the safe limit (10) for children. The ECR of Ni for adults and children was 102 and 14 times higher at road site compared to elevated site. Overall, the observed ECR values far exceed the acceptable level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.