A pyrene-based simple fluorosensor has been synthesized by a one step process. It exhibited high selectivity towards Cu(2+) ions via fluorescence enhancement of monomer and excimer emission. The origin of excimer formation was examined and established to be of static in nature from the study of absorption and excitation spectra. The observed monomer and excimer emission in the presence and absence of Cu(2+) ion with varying pH was studied and provided probable justification. The effect of varying portions of water content in solvent on the sensor molecule was also examined. The sensor found its proper application in finding accurate and trace amount of Cu(2+) ions present in drinking water samples from various sources. The detection limit of the current sensor was found to be 4 × 10(-8) M.
An "off-on" rhodamine-based fluorescence probe for the selective signaling of Cu(II) and Fe(III) has been designed and synthesized. The optical properties of this compound have been investigated in acetonitrile-water (1:1) binary solution. Very interestingly, this compound showed sensitivity and selectivity towards Cu(II) during absorption process and towards Fe(III) during emission process. So this is a nice example of an excellent dual chemosensor for two biologically/physiologically very important transition metal ions using only the two very different techniques (absorption and emission); both cases displayed only intensity enhancement.
The reactions of [Ru(III)(edta)(H(2)O)](-) (1) (edta = ethylenediaminetetraacetate) with tert-butylhydroperoxide ((t)BuOOH) and potassium hydrogenpersulfate (KHSO(5)) were studied kinetically as a function of oxidant concentration and temperature (10-30 degrees C) at a fixed pH of 6.1 using stopped-flow techniques. Kinetic results were analyzed by using global kinetic analysis techniques. The reaction was found to consist of two steps involving the rapid formation of a [Ru(III)(edta)(OOR)](2-) intermediate, which subsequently undergoes heterolytic cleavage to form [(edta)Ru(V)=O](-). Since [(edta)Ru(V)=O](-) was produced almost quantitatively in the reaction of 1 with the hydroperoxides (t)BuOOH and KHSO(5), the common mechanism is one of heterolytic scission of the O-O bond. The water soluble and easy to oxidize substrate 2,2'-azobis(3-ethylbenzithiazoline-6-sulfonate (ABTS), was employed to substantiate the mechanistic proposal. Reactions were carried out under pseudo-first order conditions for [ABTS] >> [hydroperoxide] >> [1], and were monitored as a function of time for the formation of the one-electron oxidation product ABTS (*+). The detailed suggested mechanism is consistent with the reported rate and activation parameters, and discussed in reference to the results reported for the reaction of [Ru(II)(edta)(H(2)O)](-) with H(2)O(2).
Rhodamine‐formylaniline conjugate RFA has been developed as a Cu2+‐selective ratiometric fluorescent probe. The probe shows high selectivity towards Cu2+ ion through both its absorption and emission properties; and has been characterized by 1H NMR, FTIR, ESI‐MS spectroscopy. Sensing of Cu2+ proceed through FRET process which is nicely depicted from steady‐state and fluorescence lifetime studies. From the measurement of fluorescence lifetime, the FRET mechanism has been established undoubtedly. The important parameters regarding FRET, namely the energy transfer efficiency (ΦEt) and the Förster distance (R0) have also been calculated by fluorescence measurement. The origin of different emission bands has been distinguished by recording excitation spectra. The lowest detection limit (DL) for Cu2+ ion was 4.2 ×10−7 M in Tris‐HCl buffered MeCN: H2O (10 mM, 1:1 v/v).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.