The introduction of programming knowledge for elementary and middle school students is needed to improve children's thinking and creativity. As educators who pay attention to programming-based education, lecturers of the Karangturi National University provide training on programming or coding for educators and general public. This comunity service aims to provide insight to parents, educators, and children about programming as well as skills that are needed to create digital applications. This community service activity was carried out in 2 sessions, the introduction of coding applications for children such as scratch, code.org, CodeCombat, Appinventor, and the training on the use of these applications for participants. The training material includes the explanations of benefits of various applications, the differences implementation of those applications and the evaluation of the applications by participants. Throught the community service, it is expected that participants can understand the basic skill of programming and able to deliver and taught the material to children.
In determining the consistency of health data, can use data mining techniques that can dig the hidden information from multidimensional data sets that have been obtained. In addition, data wich connected with other data can also be done by these data mining techniques. One of the data mining techniques is quite well known namely clustering. The methods are quite popular in data mining techniques that called k-means method. It is used to facilitate medical recorder for analyzing the general health situation of population groups in archiving health care data. The results of this analysis, the clustering of the disease based on age, sex, duration of disease and disease diagnosis.This research used tool Rapid Miner 5.3.Based on the data from clinic centers Kajen Pekalongan, the result of clustering is 376 items of acute and 624 unacute diseases from 1000 total of data.
Harga cabai yang kurang menentu dan bahkan cenderung terus mengalami kenaikan pada beberapa waktu tertentu akan berakibat buruk. Oleh karena itu informasi naik turunnya harga cabai pada waktu-waktu sebelumnya, dapat menjadi variable baru yang dipertimbangkan dalam peramalan harga cabai. Melihat permasalahan tersebut di harapkan metode single moving average dapat digunakan dengan baik untuk memprediksi fluktuasi tren harga cabai, sebagai langkah antisipasi permintaan pasar. Penelitian ini bertujuan untuk membandingkan metode single moving average dengan menggunakan ordo yang berbeda. Pada metode Single Moving Average berordo 10 didapatkan nilai et 199.600, MSE 7.677 dan RMSE 14.12799. Sedangkan metode Single Moving Average berordo 5 didapatkan nilai et 118.200, MSE 3.813 dan RMSE 10.87198. Dari tersebut, diantara dua metode yang digunakan dalam peramalan harga cabai di Kota Semarang dengan mengunakan metode Single Moving Average berordo 5 dan Single Moving Average berordo 10, terbukti bahwa metode Single Moving Average berordo 5 lebih baik dibandingkan dengan metode Single Moving Average berordo 10.Kata kunci: single moving average, time series, MSE, RMSE
Seiring dengan banyaknya tempat wisata, membuat masalah bagi wisatawan yang ingin memilih restoran. Hal ini bahkan dapat mengambil banyak waktu karena wisatawan dihadapkan pada banyak pilihan dan kurangnya informasi lengkap mengenai tempat wisata tersebut. Oleh karena itu, diperlukan sistem pendukung keputusan untuk membantu wisatawan dalam memilih tempat wisata. Dalam menentukan pemilihan tempat wisata menggunakan metode Weighted Product diperlukan beberapa kriteria menentukan tempat wisata yaitu jarak dari pusat kota, harga tiket masuk dan fasilitas. Sistem pemilihan lokasi wisata dengan metode weighted product diimplementasikan dalam sistem berbasis ponsel. Aplikasi ponsel dibuat untuk memudahkan admin dan pengguna memilih tempat wisata dengan proses yang memasukkan beberapa kriteria yang diinginkan oleh pengguna. Aplikasi ini juga di tambahkan google maps, sehingga pengguna langsung bisa mengetahui tempat wisata yang sudah menjadi pilihannya. Sistem informasi untuk memilih tempat wisata menggunakan weighted product dapat berjalan dengan baik. Pada pengujian black box, sistem dapat berjalan sesuai yang diharapkan. Pada pengujian beta, diperoleh kesimpulan bahwa sistem yang dibangun berfungsi sesuai dengan yang diinginkan user dengan skor 78,29%. Kata kunci: weighted product, sistem pendukung keputusan, sistem informasi,
Typical foods are foods that have characteristics that cannot be found in other areas. The number of restaurants that sell typical food made consumers confused in choosing where to buy foods. This study aims to build information systems to provide culinary product recommendations based on the criteria desired by consumers. The clustering process used the k-means method used to classify the categories of food desired by consumers into six categories: appetizers, soups, desserts, snacks and drinks. In addition to the k-means clustering method, we also used a weighted product method that serves as a culinary selection recommendation rank. The result of the research is a system that can be used for culinary selection by using criteria of food category, number of menu, price, facility and distance. Case study was conducted in Semarang culinary tour. The result of clustering obtained from this research is there are 17 special dinning house entrees, 6 specialty soup restaurants, 51 restaurants selling staple dishes, 11 selling desserts, 13 restaurants selling snacks and 6 restaurants selling specialty drinks. While the weighted product method produces Wingkorolls as the first restaurant recommendation for dessert menu with a score of 0.2267.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.