The aryl hydrocarbon receptor (AHR) mediates the effects of many endocrine disruptors and contributes to the loss of fertility in polluted environments. While previous work has focused on mechanisms of short-term endocrine disruption and ovotoxicity in response to AHR ligands, we have shown recently that chronic exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induces premature reproductive senescence in female rats without depletion of ovarian follicular reserves. In the current study, premature reproductive senescence was induced using a range of low-dose exposure to TCDD (0, 1, 5, 50, and 200 ng kg(-1) wk(-1)) beginning in utero and continuing until the transition to reproductive senescence. Doses of 50 and 200 ng TCDD kg(-1) wk(-1) delayed the age at vaginal opening and accelerated the loss of normal reproductive cyclicity with age without depletion of follicular reserves. Serum estradiol concentrations were decreased in a dose-dependent fashion (> or = 5 ng kg(-1) wk(-1)) across the estrous cycle in perisenescent rats still displaying normal cyclic vaginal cytology. Serum FSH, LH, and progesterone profiles were unchanged by TCDD. The loss of reproductive cyclicity following chronic exposure to TCDD was not accompanied by decreased responsiveness to GnRH. Ovarian endocrine disruption is the predominant functional change preceding the premature reproductive senescence induced by chronic exposure to low doses of the AHR-specific ligand TCDD.
Activation of the aryl hydrocarbon receptor (AHR) can occur in polluted environments, either from smoking-related toxicants or from endogenous ligands. We tested whether acute or chronic exposure to the AHR agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) alters the transition to reproductive senescence in female Sprague-Dawley rats. In experiment 1, rats (n = 6 per experimental group) received a single dose of 0 or 10 mug/kg of TCDD orally (p.o.) on Postnatal Day 29. Vaginal cytology was monitored for 1 wk each month until rats were killed at 1 yr of age. The single prepubertal exposure to TCDD hastened the transition to reproductive senescence in female rats and was associated with delayed puberty, abnormal cyclicity, and premature reproductive senescence. In a second experiment, rats were exposed to TCDD chronically through weekly dosing (0, 50, or 200 ng kg(-1) wk(-1) p.o., n = 7 each dose) beginning in utero. Lifelong exposure to these lower doses of TCDD induced a dose- and time-dependent loss of normal cyclicity and significantly hastened the onset of the transition to reproductive senescence (P < 0.05). This premature transition to reproductive senescence was associated with prolonged estrous cycles and, at the highest dose of TCDD, persistent estrus or diestrus. The number and size of ovarian follicles were not altered by TCDD. Diestrous concentrations of LH in rats exposed chronically to TCDD were similar to those in controls, whereas progesterone tended to be elevated at both doses of the dioxin (P < 0.08). Serum FSH was elevated in the group exposed to 50 ng/kg of TCDD (P < 0.02), whereas estradiol was decreased at both doses of dioxin (P < 0.01). Data thus far support endocrine disruption rather than depletion of follicular reserves as a primary mechanism of the premature transition to reproductive senescence following activation of the AHR pathway by TCDD in female rats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.