Recently we described the isolation of spontaneous bacteriophage K139-resistant Vibrio cholerae O1 El Tor mutants. In this study, we identified phage-resistant isolates with intact O antigen but altered core oligosaccharide which were also affected in galactose catabolism; this strains have mutations in the galU gene. We inactivated another gal gene, galE, and the mutant was also found to be defective in the catabolism of exogenous galactose but synthesized an apparently normal lipopolysaccharide (LPS). Both gal mutants as well as a rough LPS (R-LPS) mutant were investigated for the ability to colonize the mouse small intestine. The galU and R-LPS mutants, but not the galE mutant, were defective in colonization, a phenotype also associated with O-antigen-negative mutants. By investigating several parameters in vitro, we could show that galU and R-LPS mutants were more sensitive to short-chain organic acids, cationic antimicrobial peptides, the complement system, and bile salts as well as other hydrophobic agents, indicating that their outer membrane no longer provides an effective barrier function. O-antigen-negative strains were found to be sensitive to complement and cationic peptides, but they displayed significant resistance to bile salts and short-chain organic acids. Furthermore, we found that galU and galE are essential for the formation of a biofilm in a spontaneous phageresistant rugose variant, suggesting that the synthesis of UDP-galactose via UDP-glucose is necessary for biosynthesis of the exopolysaccharide. In addition, we provide evidence that the production of exopolysaccharide limits the access of phage K139 to its receptor, the O antigen. In conclusion, our results indicate involvement of galU in V. cholerae virulence, correlated with the observed change in LPS structure, and a role for galU and galE in environmental survival of V. cholerae.The causative agent of the intestinal disease cholera is Vibrio cholerae, a gram-negative motile bacterium. Of the more than 150 known serogroups, only the noncapsulated O1 and the encapsulated O139 serogroup have been found to be associated with epidemic cholera. Epidemic O139 strains are related to and were derived from O1 El Tor strains after genetic alterations of the O-antigen biosynthesis gene cluster (16). The ongoing seventh pandemic, which began in 1961, is caused by O1 El Tor strains (3). V. cholerae is a natural inhabitant of aquatic ecosystems and is known to attach to environmental surfaces such as plants, filamentous green algae, zooplankton, crustaceans, or insects (8). Recently, V. cholerae O1 El Tor was found to form a three-dimensional biofilm on abiotic surfaces (70). Biofilm formation may be important in the life cycle of pathogenic V. cholerae strains, because they reside within natural aquatic habitats during interepidemic periods. O1 El Tor strains are also able to switch to a rugose colony phenotype. This morphology correlates with the constitutively production of an exopolysaccharide allowing biofilm formation on abiotic surfaces (65...
Haemophilus influenzae has an absolute requirement for NAD (factor V) because it lacks almost all the biosynthetic enzymes necessary for the de novo synthesis of that cofactor. Factor V can be provided as either nicotinamide adenosine dinucleotide (NAD), nicotinamide mononucleotide (NMN), or nicotinamide riboside (NR) in vitro, but little is known about the source or the mechanism of uptake of these substrates in vivo. As shown by us earlier, at least two gene products are involved in the uptake of NAD, the outer membrane lipoprotein e (P4), which has phosphatase activity and is encoded by hel, and a periplasmic NAD nucleotidase, encoded by nadN. It has also been observed that the latter gene product is essential for H. influenzae growth on media supplemented with NAD. In this report, we describe the functions and substrates of these two proteins as they act together in an NAD utilization pathway. Data are provided which indicate that NadN harbors not only NAD pyrophosphatase but also NMN 5-nucleotidase activity. The e (P4) protein is also shown to have NMN 5-nucleotidase activity, recognizing NMN as a substrate and releasing NR as its product. Insertion mutants of nadN or deletion and site-directed mutants of hel had attenuated growth and a reduced uptake phenotype when NMN served as substrate. A hel and nadN double mutant was only able to grow in the presence of NR, whereas no uptake of NMN was observed.Haemophilus influenzae, a gram-negative facultative anaerobic bacterium, is responsible for significant morbidity and mortality in young children (9, 35). In order to cultivate H. influenzae, complex medium is required, and if it is not blood based, it must contain two growth factors: nicotinamide adenine dinucleotide (NAD) and hemin (6). Early biochemical investigations established that nicotinamide mononucleotide (NMN) and nicotinamide riboside (NR) can substitute for NAD, whereas nicotinamide, niacin, or other nicotine-based intermediates of the Preiss-Handler pathway cannot (10, 20, 31). The NAD dependency of H. influenzae was confirmed by the absence of the genes encoding the enzymes necessary for the de novo biosynthesis of NAD (8). Accumulation of nicotinamide nucleotides derived from NAD or NR has been demonstrated in H. influenzae and Haemophilus parainfluenzae (4, 11). For H. parainfluenzae the K m for transport is about 0.55 M for NAD and 0.14 M for NR, while the V max for NR is about four times that of NAD (4). This implies that NR is the substrate for an as-yet-unidentified inner membrane transporter, a proposal that is supported by the observation that NAD cannot be taken up into the cytosolic compartment as an intact molecule. Limited NAD salvage capacity resides within the H. influenzae cytosol, which can be demonstrated if cell extracts are incubated with NR or NMN, indicating the presence of an NMN adenylyl transferase or an NAD pyrophosphorylase activity (5, 16).
SummaryExogenous NAD utilization or pyridine nucleotide cycle metabolism is used by many bacteria to maintain NAD turnover and to limit energy-dependent de novo NAD synthesis. The genus Haemophilus includes several important pathogenic bacterial species that require NAD as an essential growth factor. The molecular mechanisms of NAD uptake and processing are understood only in part for Haemophilus. In this report, we present data showing that the outer membrane lipoprotein e(P4), encoded by the hel gene, and an exported 5 H -nucleotidase (HI0206), assigned as nadN, are necessary for NAD and NADP utilization. Lipoprotein e(P4) is characterized as an acid phosphatase that uses NADP as substrate. Its phosphatase activity is inhibited by compounds such as adenosine or NMN. The nadN gene product was characterized as an NAD-nucleotidase, responsible for the hydrolysis of NAD. H. influenzae hel and nadN mutants had defined growth deficiencies. For growth, the uptake and processing of the essential cofactors NADP and NAD required e(P4) and 5 H -nucleotidase. In addition, adenosine was identified as a potent growth inhibitor of wild-type H. influenzae strains, when NADP was used as the sole source of nicotinamide-ribosyl.
Since the first occurrence of O139 Vibrio cholerae as a cause of cholera epidemics, this serogroup has been investigated intensively, and it has been found that its pathogenicity is comparable to that of O1 El Tor strains. O139 isolates express a thin capsule, composed of a polymer of repeating units structurally identical to the lipopolysaccharide (LPS) O side chain. In this study, we investigated the role of LPS O side chain and capsular polysaccharide (CPS) in intestinal colonization by with genetically engineered mutants. We constructed CPS-negative, CPS/LPS O side chain-negative, and CPS-positive/LPS O side chain-negative mutants. Furthermore, we constructed two mutants with defects in LPS core oligosaccharide (OS) assembly. Loss of LPS O side chain or CPS resulted in a Ϸ30-fold reduction in colonization of the infant mouse small intestine, indicating that the presence of both LPS O side chain and CPS is important during the colonization process. The strain lacking both CPS and LPS O side chain and a CPS-positive, LPS O side chain-negative core OS mutant were both essentially unable to colonize. To characterize the role of surface polysaccharides in survival in the host intestine, resistance to several antimicrobial substances was investigated in vitro. These investigations revealed that the presence of CPS protects the cell against attack of the complement system and that an intact core OS is necessary for survival in the presence of bile.
Background: Dmrt1 is a highly conserved gene involved in the determination and early differentiation phase of the primordial gonad in vertebrates. In the fish medaka dmrt1bY, a functional duplicate of the autosomal dmrt1a gene on the Y-chromosome, has been shown to be the master regulator of male gonadal development, comparable to Sry in mammals. In males mRNA and protein expression was observed before morphological sex differentiation in the somatic cells surrounding primordial germ cells (PGCs) of the gonadal anlage and later on exclusively in Sertoli cells. This suggested a role for dmrt1bY during male gonad and germ cell development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.