No abstract
Artificial Intelligence is a superset of Machine Learning and Deep learning, used to build intelligent systems that can solve problems. Software Effort Estimation is used to predict the number of hours of work required to complete the task. It is difficult and a challenging task to forecast Software Effort in the project during initial stages, due to several uncertainties. Software Effort Estimation helps in planning, scheduling, budgeting a project. Various experiments were proposed to predict effort alike expert judgment, analogy based estimations, regression estimations, classification approaches, deep learning algorithms. In this paper, comparison of deepnet, neuralnet, support vector machine and random forest algorithms were carried out and the results show that random forest outperforms other algorithms because of its robustness and capacity to handle large datasets. Evaluation metrics deliberated are Mean Absolute Error, Root Mean Squared Error, Mean Square Error and R-Squared.
Background/Objective: In Software Effort Estimation (SEE), predicting the amount of time taken in human hours or months for software development is considered as a cumbersome process. SEE consists of both Software Development Effort Estimation (SDEE) and Software Maintenance Effort Estimation (SMEE). Over estimation or under estimation of software effort results in project cancellation or project failure. The objective of this study is to identify the best performing model for software Effort Estimation through experimental comparison with various Machine learning algorithms. Methods: Software Effort Estimation was addressed by using various machine learning techniques such as Multilinear Regression, Ridge Regression, Lasso Regression, Elastic-Net Regression, Random Forest, Support Vector Machine, Decision Tree and NeuralNet to recognize best performing model. Datasets used are Desharnais, Maxwell, China and Albrecht datasets. Evaluation metrics considered are Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Square Error (RMSE) and R-Squared. Findings: Experiments on various machine learning algorithms for software Effort Estimation determines that Support Vector Machine produced the best performance comparatively with other algorithms.
Software Project Estimation is a challenging and important activity in developing software projects. Software Project Estimation includes Software Time Estimation, Software Resource Estimation, Software Cost Estimation, and Software Effort Estimation. Software Effort Estimation focuses on predicting the number of hours of work (effort in terms of person-hours or person-months) required to develop or maintain a software application. It is difficult to forecast effort during the initial stages of software development. Various machine learning and deep learning models have been developed to predict the effort estimation. In this paper, single model approaches and ensemble approaches were considered for estimation. Ensemble techniques are the combination of several single models. Ensemble techniques considered for estimation were averaging, weighted averaging, bagging, boosting, and stacking. Various stacking models considered and evaluated were stacking using a generalized linear model, stacking using decision tree, stacking using a support vector machine, and stacking using random forest. Datasets considered for estimation were Albrecht, China, Desharnais, Kemerer, Kitchenham, Maxwell, and Cocomo81. Evaluation measures used were mean absolute error, root mean squared error, and R-squared. The results proved that the proposed stacking using random forest provides the best results compared with single model approaches using the machine or deep learning algorithms and other ensemble techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.