One of the common causes of a heart attack is fibrillation, a condition that causes an irregular and often abnormally fast heart rate. There is scientific evidence that the survival rate of sudden cardiac arrest patients who are rescued with cardiopulmonary resuscitation (CPR) and with the use of an automated external defibrillator (AED) is significantly increased. Despite the recommendation that automated external defibrillators should be installed in the workplace, along with a proper management system and training for employees on how to use the device, less than 70% of non-residential areas have an AED installed. The situation is even worse in residential areas, with less than 30% having an AED installed. This research concerns the development of a medical drone managing system that can deliver an AED in case of emergency. An application was developed that can be installed on the mobile phone and/or tablet of the patient or the accompanying person. In the event of a heart attack, the patient or the accompanying person can call a medical drone by sending coordinates to the drone station and a notification to medical staff. The drone station administrator can respond by sending the drone, which automatically lands at the patient’s location. After being tested in a simulation situation, the operational field test yielded satisfactory results. The medical drone can land within 1.5 meters of the destination. The designed AED drone can be used not only to deliver AEDs, but also first aid kits and prescribed drugs suitable for medical care. Such a system is especially useful in the current context of the COVID-19 pandemic.
Breast cancer is the leading cause of cancer-associated deaths among women. Techniques for non-invasive breast cancer detection and imaging are urgently needed. Multimodality breast cancer imaging is attractive since it can integrate advantages from several modalities, enabling more accurate cancer detection. In order to accomplish this, indocyanine green (ICG)-conjugated superparamagnetic iron oxide nanoworm (NW− ICG) has been synthesized as a contrast agent. When evaluated in a spontaneous mouse breast cancer model, NW−ICG gave a large tumor to normal tissue contrasts in multiple imaging modalities including magnetic particle imaging, near-infrared fluorescence imaging, and photoacoustic imaging, providing more comprehensive detection and imaging of breast cancer. Thus, NW−ICGs are an attractive platform for non-invasive breast cancer diagnosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.