<p>Abstract<br />Biphasic calcium phosphate (BCP) widely used as implants and scaffolds in different orthopedic and dental application. The aim of this study was to determine synthesis and characteristics of biocomposite BCP/collagen as bone scaffold material. BCP/collagen was classified into three groups: 1) BCP/K5 (5% collagen in scaffold), 2) BCP/K10 (10% collagen in scaffold), and 3) BCP/K15 (15% collagen in scaffold). The samples were characterized by Fourier Transform Infrared (FTIR) Spectroscopy, and Scanning Electron Microscope (SEM) techniques. Overall, concentration of collagen was not significantly different to the spectrum. However, FTIR analysis shows the change intensity in bio-composite BCP/collagen. Collagen intensity Higher concentration when collagen concentration in scaffold higher. Morphology analysis of the scaffold showed significant differences in pore formation. BCP/K15 was showed pores formed in scaffold. Synthesis of composite BCP/collagen does not affect the spectrum of functional groups, but affects the formation of pores in the bone scaffold material.</p>
Biphasic calcium phosphate (BCP) widely used as implants and scaffolds in different orthopedic and dental application. The aim of this study was to determine synthesis and characteristics of biocomposite BCP/collagen as bone scaffold material. BCP/collagen was classified into three groups: 1) BCP/K5 (5% collagen in scaffold), 2) BCP/K10 (10% collagen in scaffold), and 3) BCP/K15 (15% collagen in scaffold). The samples were characterized by Fourier Transform Infrared (FTIR) Spectroscopy, and Scanning Electron Microscope (SEM) techniques. Overall, concentration of collagen was not significantly different to the spectrum. However, FTIR analysis shows the change intensity in bio-composite BCP/collagen. Collagen intensity Higher concentration when collagen concentration in scaffold higher. Morphology analysis of the scaffold showed significant differences in pore formation. BCP/K15 was showed pores formed in scaffold. Synthesis of composite BCP/collagen does not affect the spectrum of functional groups, but affects the formation of pores in the bone scaffold material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.