P-type doping of MoS2 has proved to be a significant bottleneck in the realization of fundamental devices such as p-n junction diodes and p-type transistors due to its intrinsic n-type behavior. We report a CMOS compatible, controllable and area selective phosphorus plasma immersion ion implantation (PIII) process for p-type doping of MoS2. Physical characterization using SIMS, AFM, XRD and Raman techniques was used to identify process conditions with reduced lattice defects as well as low surface damage and etching, 4X lower than previous plasma based doping reports for MoS2. A wide range of nondegenerate to degenerate p-type doping is demonstrated in MoS2 field effect transistors exhibiting dominant hole transport. Nearly ideal and air stable, lateral homogeneous p-n junction diodes with a gate-tunable rectification ratio as high as 2 × 10(4) are demonstrated using area selective doping. Comparison of XPS data from unimplanted and implanted MoS2 layers shows a shift of 0.67 eV toward lower binding energies for Mo and S peaks indicating p-type doping. First-principles calculations using density functional theory techniques confirm p-type doping due to charge transfer originating from substitutional as well as physisorbed phosphorus in top few layers of MoS2. Pre-existing sulfur vacancies are shown to enhance the doping level significantly.
The search of a p-type metal contact on MoS2 has remained inconclusive, with high work function metals such as Au, Ni, and Pt showing n-type behavior and mixed reports of n as well as p-type behavior for Pd. In this work, we report quantitative Schottky barrier heights for Au and Pd contacts to MoS2 obtained by analysing low temperature transistor characteristics and contact resistance data obtained using the transfer length method. Both Au and Pd exhibit n-type behavior on multilayer as well as monolayer MoS2 transistors with Schottky barrier heights of 0.126 eV and 0.4 eV, and contact resistances of 42 Ω.mm and 18 × 104 Ω.mm respectively. Scanning photocurrent spectroscopy data is in agreement with the resulting energy band alignment in Au-MoS2-Pd devices further reinforcing the observation that the Fermi-level is pinned in the upper half of MoS2 bandgap.
We demonstrate a low and constant effective Schottky barrier height (ΦB ∼ 40 meV) irrespective of the metal work function by introducing an ultrathin TiO2 ALD interfacial layer between various metals (Ti, Ni, Au, and Pd) and MoS2. Transmission line method devices with and without the contact TiO2 interfacial layer on the same MoS2 flake demonstrate reduced (24×) contact resistance (RC) in the presence of TiO2. The insertion of TiO2 at the source-drain contact interface results in significant improvement in the on-current and field effect mobility (up to 10×). The reduction in RC and ΦB has been explained through interfacial doping of MoS2 and validated by first-principles calculations, which indicate metallic behavior of the TiO2-MoS2 interface. Consistent with DFT results of interfacial doping, X-ray photoelectron spectroscopy (XPS) data also exhibit a 0.5 eV shift toward higher binding energies for Mo 3d and S 2p peaks in the presence of TiO2, indicating Fermi level movement toward the conduction band (n-type doping). Ultraviolet photoelectron spectroscopy (UPS) further corroborates the interfacial doping model, as MoS2 flakes capped with ultrathin TiO2 exhibit a reduction of 0.3 eV in the effective work function. Finally, a systematic comparison of the impact of selective doping with the TiO2 layer under the source-drain metal relative to that on top of the MoS2 channel shows a larger benefit for transistor performance from the reduction in source-drain contact resistance.
Two-dimensional (2D) materials hold great promise for future nanoelectronics as conventional semiconductor technologies face serious limitations in performance and power dissipation for future technology nodes. The atomic thinness of 2D materials enables highly scaled field-effect transistors (FETs) with reduced short-channel effects while maintaining high carrier mobility, essential for high-performance, low-voltage device operations. The richness of their electronic band structure opens up the possibility of using these materials in novel electronic and optoelectronic devices. These applications are strongly dependent on the electrical properties of 2D materials-based FETs. Thus, accurate characterization of important properties such as conductivity, carrier density, mobility, contact resistance, interface trap density, etc is vital for progress in the field. However, electrical characterization methods for 2D devices, particularly FET-related measurement techniques, must be revisited since conventional characterization methods for bulk semiconductor materials often fail in the limit of ultrathin 2D materials. In this paper, we review the common electrical characterization techniques for 2D FETs and the related issues arising from adapting the techniques for use on 2D materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.