Published gas-liquid chromatographic (GLC) methods for the determination of nicotine and cotinine have proved impractical for the analysis of a large number of clinical samples. Significant improvements over other methods have been achieved, being low sample volume (0.5 mL plasma), rapid two-step extraction from plasma, no evaporation step, and good separation. The lower limits of sensitivity for nicotine and cotinine were 1 and 5 ng/mL, respectively. The method was validated by the analysis of plasma samples from cigarette-smoking volunteers. The method described permits the quick, routine determination of nicotine and cotinine in a large number of samples.
A rapid gas-liquid chromatographic (GLC) method was developed for the confirmation of benzoylecgonine (BE) positive urine samples screened by the enzyme multiplied immunoassay technique (EMIT®) assay. The procedure is performed by solvent extraction of BE from 0.1 or 0.2 mL of urine, followed by an aqueous wash of the solvent and evaporation. The dried residue was derivatized with 50 µL of pentafluoropropionic anhydride and 25 µL of pentafluoropropropanol at 90°C for 15 min. The derivatizing reagents were evaporated to dryness, and the derivatized BE, and cocaine if present, were reconstituted and injected into the gas chromatograph. The column was a 15-m by 0.2-mm fused silica capillary column, coated with 0.25 µm of DB-1, terminating in a nitrogen phosphorus detector (NPD). Cocaine and the pentafluoro BE derivatives retention times were 3.2 and 2.6 min, respectively. Nalorphine was used as reference or internal standard with a retention time of 4.78 min. The complete procedure can be performed in approximately 1.5 h. The EMIT cutoff between positive and negative urine samples is 300 ng/mL of BE. The lower limit of sensitivity of this method is 25 ng of BE extracted from urine. Validation studies resulted in confirmation of 101 out of 121 EMIT cocaine positive urine samples that could not be confirmed by thin-layer chromatography (TLC). This represents 84% confirmation efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.