The hippocampal formation is essential for forming declarative representations of the relationships among multiple stimuli. The rodent hippocampal formation, including the entorhinal cortex and subicular complex, is critical for spatial memory. Two classes of hippocampal neurons fire in relation to spatial features. Place cells collectively map spatial locations, with each cell firing only when the animal occupies that cell's "place field," a particular subregion of the larger environment. Head direction (HD) cells encode directional heading, with each HD cell firing when the rat's head is oriented in that cell's particular "preferred firing direction." Both landmarks and internal cues (e.g., vestibular, motor efference copy) influence place and HD cell activity. However, as is the case for navigation, landmarks are believed to exert greater influence over place and HD cell activity. Here we show that temporary inactivation of the vestibular system led to the disruption of location-specific firing in hippocampal place cells and direction-specific discharge of postsubicular HD cells, without altering motor function. Place and HD cell activity recovered over a time course similar to that of the restoration of vestibular function. These results indicate that vestibular signals provide an important influence over the expression of hippocampal spatial representations, and may explain the navigational deficits of humans with vestibular dysfunction.
Considerable indirect evidence suggests that the type 2 deiodinase (D2) generates T(3) from T(4) for local use in specific tissues including pituitary, brown fat, and brain, whereas the type I deiodinase (D1) generates T(3) from T(4) in the thyroid and peripheral tissues primarily for export to plasma. From studies in deiodinase-deficient mice, the importance of the D2 for local T(3) generation has been confirmed. However, the phenotypes of these D1 knockout (KO) and D2KO mice are surprisingly mild and their serum T(3) level, general health, and reproductive capacity are unimpaired. To explore further the importance of 5'deiodination in thyroid hormone economy, we used a mouse devoid of both D1 and D2 activity. In general, the phenotype of the D1/D2KO mouse is the sum of the phenotypes of the D1KO and D2KO mice. It appears healthy and breeds well, and most surprisingly its serum T(3) level is normal. However, impairments in brain gene expression and possibly neurological function are somewhat greater than those seen in the D2KO mouse, and the serum rT(3) level is elevated 6-fold in the D1/D2KO mouse but only 2-fold in the D1KO mouse and not at all in the D2KO mouse. The data suggest that whereas D1 and D2 are not essential for the maintenance of the serum T(3) level, they do serve important roles in thyroid hormone homeostasis, the D2 being critical for local T(3) production and the D1 playing an important role in iodide conservation by serving as a scavenger enzyme in peripheral tissues and the thyroid.
Considerable indirect evidence suggests that the type 2 deiodinase (D2) generates T3 from T4 for local use in specific tissues such as pituitary, brown fat, and brain, and studies with a D2-deficent mouse, the D2 knockout (D2KO) mouse, have shown this to be the case in pituitary and brown fat. The present study employs the D2KO mouse to determine the role of D2 in the developing brain. As expected, the T3 content in the neonatal D2KO brain was markedly reduced to a level comparable with that seen in the hypothyroid neonatal wild-type mouse. However, the mRNA levels of several T3-responsive genes were either unaffected or much less affected in the brain of the D2KO mouse than in that of the hypothyroid mouse, and compared with the hypothyroid mouse, the D2KO mouse exhibited a very mild neurological phenotype. The current view of thyroid hormone homeostasis in the brain dictates that the T3 present in neurons is generated mostly, if not exclusively, from T4 by the D2 in glial cells. This view is inadequate to explain the findings presented herein, and it is suggested that important compensatory mechanisms must be in play in the brain to minimize functional abnormalities in the absence of the D2.
The role of gonadal hormones in the maturation of the orbital prefrontal cortex (ORB) was studied in normal male and female rhesus monkeys, monkeys given ORB lesions at 50 days of age, and female monkeys given androgen at different ages. Monkeys were tested on an object discrimination reversal task at 75 days of age. Gender influenced the performance of monkeys on the task during normal development and after ORB lesions. Normal males made fewer errors than did normal females. Females treated with androgen performed similarly to normal male monkeys. ORB lesions produced deficits in male monkeys and in females given androgen during late prenatal or early postnatal life, but not in normal females. These findings suggest that gonadal hormones may play an inductive role in the differentiation of higher cortical function in nonhuman primates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.