BackgroundModelling and simulation are being increasingly utilized to support the discovery and development of new anti-malarial drugs. These approaches require reliable in vitro data for physicochemical properties, permeability, binding, intrinsic clearance and cytochrome P450 inhibition. This work was conducted to generate an in vitro data toolbox using standardized methods for a set of 45 anti-malarial drugs and to assess changes in physicochemical properties in relation to changing target product and candidate profiles.MethodsIonization constants were determined by potentiometric titration and partition coefficients were measured using a shake-flask method. Solubility was assessed in biorelevant media and permeability coefficients and efflux ratios were determined using Caco-2 cell monolayers. Binding to plasma and media proteins was measured using either ultracentrifugation or rapid equilibrium dialysis. Metabolic stability and cytochrome P450 inhibition were assessed using human liver microsomes. Sample analysis was conducted by LC–MS/MS.ResultsBoth solubility and fraction unbound decreased, and permeability and unbound intrinsic clearance increased, with increasing Log D7.4. In general, development compounds were somewhat more lipophilic than legacy drugs. For many compounds, permeability and protein binding were challenging to assess and both required the use of experimental conditions that minimized the impact of non-specific binding. Intrinsic clearance in human liver microsomes was varied across the data set and several compounds exhibited no measurable substrate loss under the conditions used. Inhibition of cytochrome P450 enzymes was minimal for most compounds.ConclusionsThis is the first data set to describe in vitro properties for 45 legacy and development anti-malarial drugs. The studies identified several practical methodological issues common to many of the more lipophilic compounds and highlighted areas which require more work to customize experimental conditions for compounds being designed to meet the new target product profiles. The dataset will be a valuable tool for malaria researchers aiming to develop PBPK models for the prediction of human PK properties and/or drug–drug interactions. Furthermore, generation of this comprehensive data set within a single laboratory allows direct comparison of properties across a large dataset and evaluation of changing property trends that have occurred over time with changing target product and candidate profiles.
A series of amide (8–32, 40–45) and urea (33, 34, 36–39) analogues based on the thiaplakortone A natural product scaffold were synthesised and screened for in vitro antimalarial activity against chloroquine-sensitive (3D7) and chloroquine- and mefloquine-resistant (Dd2) Plasmodium falciparum parasite lines. Several analogues displayed potent inhibition of P. falciparum growth (IC50 <500 nM) and good selectivity for P. falciparum versus human neonatal foreskin fibroblast cells (selectivity index >100). Two of these compounds, 8 and 33, exhibited good aqueous solubility and metabolic stability, and when administered subcutaneously to mice (32 mg kg(-1)), plasma concentrations remained above 0.2 μM for at least 8 h. Both 8 and 33 were well tolerated in mice after subcutaneous administration of 32 mg kg(-1) twice daily for 4 days. Using this regimen blood stage P. berghei was suppressed by 52% for 8 and 26% for 33, relative to the vehicle control.
ObjectiveTo investigate the physical and chemical compatibility of pentoxifylline (PTX) with a range of parenteral medications used in neonatal intensive care.DesignPTX and drug solutions were combined in glass vials, inspected for physical incompatibility and evaluated on the basis of PTX concentrations for chemical compatibility.ResultsNo precipitation, colour change or turbidity was observed in any of the test mixtures. The PTX concentration was approximately 5.5% lower when combined with undiluted calcium gluconate injection (100 mg/mL). The PTX concentration ratios for all other combinations, including diluted calcium gluconate injection (50 mg/mL), were in the range of 99.5%–102%.ConclusionIn simulated Y-site conditions, PTX was found to be compatible with 15 parenteral medications and six total parenteral nutrition solutions. Based on PTX concentration tests, it would be prudent to avoid mixing PTX with undiluted calcium gluconate injection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.