Cephalopods have been utilised in neuroscience research for more than 100 years particularly because of their phenotypic plasticity, complex and centralised nervous system, tractability for studies of learning and cellular mechanisms of memory (e.g. long-term potentiation) and anatomical features facilitating physiological studies (e.g. squid giant axon and synapse). On 1 January 2013, research using any of the about 700 extant species of “live cephalopods” became regulated within the European Union by Directive 2010/63/EU on the “Protection of Animals used for Scientific Purposes”, giving cephalopods the same EU legal protection as previously afforded only to vertebrates. The Directive has a number of implications, particularly for neuroscience research. These include: (1) projects will need justification, authorisation from local competent authorities, and be subject to review including a harm-benefit assessment and adherence to the 3Rs principles (Replacement, Refinement and Reduction). (2) To support project evaluation and compliance with the new EU law, guidelines specific to cephalopods will need to be developed, covering capture, transport, handling, housing, care, maintenance, health monitoring, humane anaesthesia, analgesia and euthanasia. (3) Objective criteria need to be developed to identify signs of pain, suffering, distress and lasting harm particularly in the context of their induction by an experimental procedure. Despite diversity of views existing on some of these topics, this paper reviews the above topics and describes the approaches being taken by the cephalopod research community (represented by the authorship) to produce “guidelines” and the potential contribution of neuroscience research to cephalopod welfare.
In cephalopods, the endocrine optic glands on the optic tract control the maturation of the gonads. The glands are innervated by the optic gland nerve, which originates in the central nervous system. To explore the involvement of neuropeptides in the nervous control of the optic gland of Octopus vulgaris, the presence and distribution of Phe-Met-Arg-Phe-NH2 (FMRF-amide)-like and gonadotropin releasing homone (GnRH)-like peptides were examined in the central nervous system and optic gland by immunohistochemistry. For GnRH immunodetection, antibodies against four different forms of GnRH were used: cGnRH-I, cGnRH-II, sGnRH, and mGnRH. The optic gland nerve provides direct and indirect signals coming from the centres of integration of chemical, visual, and olfactive stimuli to modulate the glandular activity. In these centres, the subpedunculate area, the olfactory and optic lobes, and FMRF-amide-like and GnRH-like immunoreactivities were detected. The subpedunculate area seems to be the source of the FMRF-amide-like peptide, whereas the posterior olfactory lobule is the source of the GnRH-like peptide. The immunoreactive fibres for both neuropeptides leave their sources and directly enter the optic gland nerve. FMRF-amide- and GnRH-immunoreactive nerve endings are seen on the glandular cells. The evidence of a possible neuropeptidergic control of optic gland activity reinforces the analogies and the functional parallels in the octopus, insect, crustacean, and vertebrate hormonal systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.