Single-stranded DNA-binding proteins (SSBs) play essential roles in DNA replication, recombination, and repair in bacteria, archaea and eukarya. The SSBs share a common core ssDNA-binding domain with a conserved OB (oligonucleotide/oligosaccharide binding) fold. This ssDNA-binding domain was presumably present in the common ancestor to all three major branches of life. In recent years, there has been an increasing interest in SSBs because they are useful for molecular biology methods and for analytical purposes. In this review, we concentrate on recent advances in the discovery of new sources of SSBs as well as certain aspects of their applications in analytical sciences.
A psychrotrophic bacterium producing a cold-adapted esterase upon growth at low temperatures was isolated from the alimentary tract of Antarctic krill Euphasia superba Dana, and classified as Pseudoalteromonas sp. strain 643A. A genomic DNA library of strain 643A was introduced into Escherichia coli TOP10F', and screening on tributyrin-containing agar plates led to the isolation of esterase gene. The esterase gene (estA, 621 bp) encoded a protein (EstA) of 207 amino acid residues with molecular mass of 23,036 Da. Analysis of the amino acid sequence of EstA suggests that it is a member of the GDSL-lipolytic enzymes family. The purification and characterization of native EstA esterase were performed. The enzyme displayed 20-50% of maximum activity at 0-20 degrees C. The optimal temperature for EstA was 35 degrees C. EstA was stable between pH 9 and 11.5. The enzyme showed activity for esters of short- to medium-chain (C(4) and C(10)) fatty acids, and exhibited no activity for long-chain fatty acid esters like that of palmitate and stearate. EstA was strongly inhibited by phenylmethylsulfonyl fluoride, 2-mercaptoethanol, dithiothreitol and glutathione. Addition of selected divalent ions e.g. Mg(2+), Co(2+) and Cu(2+) led to the reduction of enzymatic activity and the enzyme was slightly activated ( approximately 30%) by Ca(2+) ions.
The crystal structure of the esterase EstA from the cold-adapted bacterium Pseudoalteromonas sp. 643A was determined in a covalently inhibited form at a resolution of 1.35 Å. The enzyme has a typical SGNH hydrolase structure consisting of a single domain containing a five-stranded-sheet, with three helices at the convex side and two helices at the concave side of the sheet, and is ornamented with a couple of very short helices at the domain edges. The active site is located in a groove and contains the classic catalytic triad of Ser, His and Asp. In the structure of the crystal soaked in diethyl p-nitrophenyl phosphate (DNP), the catalytic serine is covalently connected to a phosphonate moiety that clearly has only one ethyl group. This is the only example in the Protein Data Bank of a DNP-inhibited enzyme with covalently bound monoethylphosphate.
The crystal structure of the single-stranded DNA-binding protein from Thermus aquaticus has been solved and refined at 1.85 Å resolution. Two monomers, each encompassing two oligonucleotide/oligosaccharide-binding (OB) domains and a number of flexible -hairpin loops, form an oligomer of approximate D 2 symmetry typical of bacterial SSBs. Comparison with other SSB structures confirms considerable variability in the mode of oligomerization and aggregation of SSB oligomers.
Twenty nine environmental samples were screened for the presence of anaerobic microorganisms fermenting glycerol with 1,3-propanediol as a final product. Seven samples were then selected for the next step of our research and eight bacteria strains were cultured anaerobically. Seven of them produced 1,3-propanediol with a yield of 0.47-0.58. Six of the the isolated microorganisms were then classified as Clostridium butyricum (four strains), C. lituseburense (one strain), and C. sartagoforme (one strain). We suggest that of all these strains C. butyricum 2CR371.5 is the best 1,3-propanediol producer as producing no lactate as a by-product and growing well on a glycerol-containing medium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.