In some diseases, a very important role is played by the ability of bacteria to form multi-dimensional complex structure known as biofilm. The most common disease of the oral cavity, known as dental caries, is a top leader. Streptococcus mutans, one of the many etiological factors of dental caries, is a microorganism which is able to acquire new properties allowing for the expression of pathogenicity determinants determining its virulence in specific environmental conditions. Through the mechanism of adhesion to a solid surface, S. mutans is capable of colonizing the oral cavity and also of forming bacterial biofilm. Additional properties enabling S. mutans to colonize the oral cavity include the ability to survive in an acidic environment and specific interaction with other microorganisms colonizing this ecosystem. This review is an attempt to establish which characteristics associated with biofilm formation—virulence determinants of S. mutans—are responsible for the development of dental caries. In order to extend the knowledge of the nature of Streptococcus infections, an attempt to face the following problems will be made: Biofilm formation as a complex process of protein–bacterium interaction. To what extent do microorganisms of the cariogenic flora exemplified by S. mutans differ in virulence determinants “expression” from microorganisms of physiological flora? How does the environment of the oral cavity and its microorganisms affect the biofilm formation of dominant species? How do selected inhibitors affect the biofilm formation of cariogenic microorganisms?
Streptococcus infections are still one of the important problems facing contemporary medicine. As the World Health Organization (WHO) warns, Streptococcus pneumoniae is responsible for the highest number of pneumonia cases all over the world. Despite an increasing number of pneumococcal vaccinations, incidences of disease connected to this pathogen’s infection stay at the same level, which is related to a constantly increasing number of infections caused by nonvaccinal serotypes. Unfortunately, the pathogenicity of bacteria of the Streptococcus genus is also connected to species considered to be physiological flora in humans or animals and, additionally, new species exhibiting pathogenic potential have been discovered. This paper presents an opinion concerning the epidemiology of streptococci infections based on case studies and other publications devoted to this problem. It also sheds new light based on recent reports on the prevention of protective vaccinations application in the case of streptococci infections.
The aim of the study was to evaluate the anti-cariogenic effects of Lactobacillus salivarius by reducing pathogenic species and biofilm mass in a double-species biofilm model. Coexistence of S. mutans with C. albicans can cause dental caries progression or recurrence of the disease in the future. Fifty-nine children with diagnosed early childhood caries (ECC) were recruited onto the study. The condition of the children’s dentition was defined according to the World Health Organization guidelines. The participants were divided into children with initial enamel demineralization and children showing dentin damage. The study was performed on the S. mutans and C. albicans clinical strains, isolated from dental plaque of patients with ECC. The effect of a probiotic containing Lactobacillus salivarius on the ability of S. mutans and C. albicans to produce a double-species biofilm was investigated in an in vitro model. The biomass of the formed/non-degraded biofilm was analyzed on the basis of its crystal violet staining. The number of colonies of S. mutans and C. albicans (CFU/mL, colony forming units/mL) forming the biofilm was determined. Microorganism morphology in the biofilm was evaluated using a scanning electron microscope (SEM). In vitro analysis demonstrated that the presence of S. mutans increased the number of C. albicans colonies (CFU/mL); the double-species biofilm mass and hyphal forms produced in it by the yeast. L. salivarius inhibited the cariogenic biofilm formation of C. albicans and S. mutans. Under the influence of the probiotic; the biofilm mass and the number of S. mutans; C. albicans and S. mutans with C. albicans colonies in the biofilm was decreased. Moreover; it can be noted that after the addition of the probiotic; fungi did not form hyphae or germ tubes of pathogenic potential. These results suggest that L. salivarius can secrete intermediates capable of inhibiting the formation of cariogenic S. mutans and C. albicans biofilm; and may inhibit fungal morphological transformation and thereby reduce the pathogenicity of C. albicans; weakening its pathogenic potential. Further research is required to prove or disprove the long-term effects of the preparation and to achieve preventive methods.
BackgroundRecently, a continuous growth of interest has been observed in antimicrobial peptides (AMPs) in the light of an alarming increase in resistance of bacteria and fungi against antibiotics. AMPs are used as biomarkers in diagnosis and monitoring of oral cavity pathologies. Therefore, the determination of specific protein profiles in children diagnosed with early childhood caries (ECC) might be a basis for effective screening tests and specialized examinations which may enable progression of disease.MethodsThe objective of the studies was to determine the role of histatin-5 and β-defensing-2 as a diagnostic marker of early childhood caries progression. In this work, results of concentration determination of two salivary proteins (histatin-5 and β-defensin-2) were presented. In addition, bacterial profiles from dental plaque in various stages of ECC and control were marked. The assessment of alteration in the concentration of these two proteins in a study group of children with various stages of ECC and a control group consisting of children with no symptoms was performed by enzyme-linked immunosorbent assays.ResultsThe statistical analysis showed a significant increase in the concentration of histatin-5 and β-defensin-2 in the study group compared to the control group and correlated with the progression of the disease.ConclusionsThe confirmation of concentration changes in these proteins during the progression of dental caries may discover valuable disease progression biomarkers.
Bacteria belonging to theEnterobacteriaceaefamily that produce extended-spectrumβ-lactamase (ESBL) enzymes are important pathogens of infections. Increasing numbers of ESBL-producing bacterial strains exhibiting multidrug resistance have been observed. The aim of the study was to evaluate the prevalence ofblaCTX-M,blaSHV, andblaTEMgenes among ESBL-producingKlebsiella pneumoniae,Escherichia coli, andProteus mirabilisstrains and to examine susceptibility to antibiotics of tested strains. In our study, thirty-six of the tested strains exhibitedblaCTX-Mgenes(blaCTX-M-15,blaCTX-M-3,blaCTX-M-91, andblaCTX-M-89). Moreover, twelve ESBL-positive strains harboredblaSHVgenes(blaSHV-18,blaSHV-7,blaSHV-2, andblaSHV-5), and the presence of ablaTEMgene(blaTEM-1)in twenty-five ESBL-positive strains was revealed. AmongK. pneumoniaethe multiple ESBL genotype composed ofblaCTX-M-15, blaCTX-M-3, blaSHV-18, blaSHV-7, blaSHV-2, andblaSHV-5genes encoding particular ESBL variants was observed. Analysis of bacterial susceptibility to antibiotics revealed that, amongβ-lactam antibiotics, the most effective againstE. colistrains was meropenem (100%), whereasK. pneumoniaewere completely susceptible to ertapenem and meropenem (100%), andP. mirabilisstrains were susceptible to ertapenem (91.7%). Moreover, among non-β-lactam antibiotics, gentamicin showed the highest activity toE. coli(91.7%) and ciprofloxacin the highest toK. pneumoniae(83.3%).P. mirabilisrevealed the highest susceptibility to amikacin (66.7%).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.