This article introduces a new corpus of eye movements in silent reading-the Russian Sentence Corpus (RSC). Russian uses the Cyrillic script, which has not yet been investigated in cross-linguistic eye movement research. As in every language studied so far, we confirmed the expected effects of low-level parameters, such as word length, frequency, and predictability, on the eye movements of skilled Russian readers. These findings allow us to add Slavic languages using Cyrillic script (exemplified by Russian) to the growing number of languages with different orthographies, ranging from the Roman-based European languages to logographic Asian ones, whose basic eye movement benchmarks conform to the universal comparative science of reading (Share, 2008). We additionally report basic descriptive corpus statistics and three exploratory investigations of the effects of Russian morphology on the basic eye movement measures, which illustrate the kinds of questions that researchers can answer using the RSC. The annotated corpus is freely available from its project page at the Open Science Framework: https://osf.io/x5q2r/ .
This eye-tracking study establishes basic benchmarks of eye movements during reading in heritage language (HL) by Russian-speaking adults and adolescents of high (n = 21) and low proficiency (n = 27). Heritage speakers (HSs) read sentences in Cyrillic, and their eye movements were compared to those of Russian monolingual skilled adult readers, 8-year-old children and L2 learners. Reading patterns of HSs revealed longer mean fixation durations, lower skipping probabilities, and higher regressive saccade rates than in monolingual adults. High-proficient HSs were more similar to monolingual children, while low-proficient HSs performed on par with L2 learners. Low-proficient HSs differed from high-proficient HSs in exhibiting lower skipping probabilities, higher fixation counts, and larger frequency effects. Taken together, our findings are consistent with the weaker links account of bilingual language processing as well as the divergent attainment theory of HL.
Experimental studies on polysemy have come to contradictory conclusions on whether words with multiple senses are stored as separate or shared mental representations. The present study examined the semantic relatedness and semantic similarity of literal and non-literal (metonymic and metaphorical) senses of three word classes: nouns, verbs, and adjectives. Two methods were used: a psycholinguistic experiment and a distributional analysis of corpus data. In the experiment, participants were presented with 6–12 short phrases containing a polysemous word in literal, metonymic, or metaphorical senses and were asked to classify them so that phrases with the same perceived sense were grouped together. To investigate the impact of professional background on their decisions, participants were controlled for linguistic vs. non-linguistic education. For nouns and verbs, all participants preferred to group together phrases with literal and metonymic senses, but not any other pairs of senses. For adjectives, two pairs of senses were often grouped together: literal with metonymic, and metonymic with metaphorical. Participants with a linguistic background were more accurate than participants with non-linguistic backgrounds, although both groups shared principal patterns of sense classification. For the distributional analysis of corpus data, we used a semantic vector approach to quantify the similarity of phrases with literal, metonymic, and metaphorical senses in the corpora. We found that phrases with literal and metonymic senses had the highest degree of similarity for the three word classes, and that metonymic and metaphorical senses of adjectives had the highest degree of similarity among all word classes. These findings are in line with the experimental results. Overall, the results suggest that the mental representation of a polysemous word depends on its word class. In nouns and verbs, literal and metonymic senses are stored together, while metaphorical senses are stored separately; in adjectives, metonymic senses significantly overlap with both literal and metaphorical senses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.