Outbred, male Sprague-Dawley rats can be classified as either low or high cocaine responders (LCRs or HCRs, respectively) based on cocaine-induced locomotor activity in an open-field arena. This difference reflects cocaine's ability to inhibit the striatal dopamine transporter and predicts development of sensitization. To investigate the relationship between initial cocaine locomotor responsiveness and cocaine reward, here we first classified rats as either LCRs or HCRs in a conditioned place preference (CPP) apparatus. Subsequently, we conducted cocaine conditioning trials, twice daily over four days with vehicle and cocaine (10 mg/kg, i.p. or 1 mg/kg, i.v.). When cocaine was administered by the i.p. route, similar to previous findings in the open-field, LCRs and HCRs were readily classified and locomotor sensitization developed in LCRs, but not HCRs. However, cocaine CPP was not observed. In contrast, when cocaine was administered by the i.v. route, the LCR/HCR classification not only predicted sensitization, but also CPP, with only LCR rats exhibiting sensitization and cocaine conditioning. Our findings show that the initial locomotor response to cocaine can predict CPP in male Sprague-Dawley rats under conditions when place conditioning develops, and that LCRs may be more prone to develop conditioning in the context of cocaine reward.
Both humans and animals exhibit marked individual differences in cocaine responsiveness. By using the median split of cocaine-induced locomotor activity, we have classified outbred male Sprague-Dawley rats as either low or high cocaine responders (LCRs or HCRs, respectively). LCR/HCR classification predicts differences in cocaine inhibition of striatal dopamine (DA) transporters (DATs), cocaine-induced locomotor sensitization, cocaine-conditioned place preference, and motivation to self-administer cocaine. In this study, we used in vivo microdialysis to investigate whether the differential cocaine inhibition of DATs in LCRs and HCRs is translated into differential extracellular DA levels. Paralleling their locomotor profiles, LCRs and HCRS had similar basal extracellular DA levels in dorsal striatum (dSTR) and nucleus accumbens (NAc); after acute cocaine injection (10 mg/kg i.p.), HCRs showed greater cocaine-induced increases in DA than LCRs, with more pronounced differences in NAc. After repeated cocaine injection, LCRs and HCRs no longer differed in cocaine-induced locomotor activity or extracellular DA. To further explore the differential susceptibility of LCR/HCR DATs to cocaine, we used in vitro [3 H]2-carbomethoxy-3-(4-fluorophenyl)tropane ([ 3 H]WIN 35,428) binding and quantitative autoradiography to measure the number of DAT binding sites and cocaine's affinity for them. After acute cocaine administration, HCRs had fewer DAT binding sites in dSTR and NAc shell, compared to LCRs. No LCR/ HCR differences were observed in DAT number after repeated cocaine injection or in cocaine's affinity. Our findings suggest that levels of striatal extracellular DA and DATs both make important contributions to initial differences in cocaine activation, which in LCRs/HCRs predict differential cocaine reward and reinforcement.
Individual differences are a hallmark of drug addiction. Here, we describe a rat model based on differential initial responsiveness to low dose cocaine. Despite similar brain cocaine levels, individual outbred Sprague-Dawley rats exhibit markedly different magnitudes of acute cocaine-induced locomotor activity and, thereby, can be classified as low or high cocaine responders (LCRs or HCRs). LCRs and HCRs differ in drug-induced, but not novelty-associated, hyperactivity. LCRs have higher basal numbers of striatal dopamine transporters (DATs) than HCRs and exhibit marginal cocaine inhibition of in vivo DAT activity and cocaine-induced increases in extracellular DA. Importantly, lower initial cocaine response predicts greater locomotor sensitization, conditioned place preference and greater motivation to self-administer cocaine following low dose acquisition. Further, outbred Long-Evans rats classified as LCRs, versus HCRs, are more sensitive to cocaine’s discriminative stimulus effects. Overall, results to date with the LCR/HCR model underscore the contribution of striatal DATs to individual differences in initial cocaine responsiveness and the value of assessing the influence of initial drug response on subsequent expression of addiction-like behaviors.
Humans differ in their initial response to, and subsequent abuse of, addictive drugs like cocaine. Rodents also exhibit marked individual differences in responsiveness to cocaine. Previously, we classified male Sprague-Dawley rats as either low or high cocaine responders (LCRs or HCRs, respectively), based on their acute low-dose cocaine-induced locomotor activity, and found that with repeated drug exposure LCRs exhibit greater cocaine locomotor sensitization, reward and reinforcement than HCRs. Differential cocaine-induced increases in striatal dopamine help to explain the LCR/HCR phenotypes. Differential levels of stress and/or anxiety could also contribute but have not been explored. Here we measured open-field activity and plasma corticosterone levels both pre- and post-cocaine treatment in LCRs, HCRs, and saline-treated controls. The three groups did not differ in baseline locomotor activity or corticosterone levels. Importantly, LCR/HCR differences in corticosterone levels were also not observed following acute cocaine (10 mg/kg, i.p.), when cocaine induced approximately 3.5-fold greater locomotor activity in HCRs than LCRs. Additionally, there were no LCR/HCR differences in plasma corticosterone levels following five days of once-daily cocaine, during which time LCRs developed locomotor sensitization such that their cocaine-induced locomotor activity no longer differed from that of HCRs. Likewise, there were no group activity differences in any of four concentric zones within the open-field chamber. In summary, neither plasma corticosterone levels nor thigmotaxis-type anxiety appears to be a factor that contributes to the observed cocaine-induced LCR/HCR behavioral differences.
Patients with post-traumatic stress disorder (PTSD) exhibit exaggerated daytime muscle tension as well as nocturnal sleep disturbances. Yet, these physiological and behavioral features of the disorder are little studied in animal models of PTSD. Accordingly, the present studies were designed to assess alterations in muscle tension and diurnal hyper-vigilance resulting from exposure to a social defeat stressor paired with an olfactory stimulus, which was then used as a reminder of stressor exposure. In the first series of experiments, rats presented with an olfactory cue paired previously with a single social defeat exhibited a significant increase in muscle tension 4 weeks following defeat. In the second series of experiments, an olfactory cue paired previously with a single social defeat induced a significant increase in locomotor activity among quiescent rats 4 weeks following stressor exposure. The present results thus support the a priori hypotheses that novel physiological and behavioral hallmarks of PTSD can be documented in an animal model of the disorder and that the present overt signs of reactive hyper-vigilance can be triggered by reintroduction of an olfactory stimulus present at the time of initial trauma exposure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.