Osteosarcoma (OSA) is the most common malignant bone neoplasia in humans and dogs. In dogs, treatment consists of surgery in combination with chemotherapy (mostly carboplatin and/or doxorubicin (Dox)). Chemotherapy is often rendered ineffective by multidrug resistance. Previous studies have revealed that Dox conjugated with 4 nm glutathione-stabilized gold nanoparticles (Au-GSH-Dox) enhanced the anti-tumor activity and cytotoxicity of Dox in Dox-resistant feline fibrosarcoma cell lines exhibiting high P-glycoprotein (P-gp) activity. The present study investigated the influence of Au-GSH-Dox on the canine OSA cell line D17 and its relationship with P-gp activity. A human Dox-sensitive OSA cell line, U2OS, served as the negative control. Au-GSH-Dox, compared to free Dox, presented a greater cytotoxic effect on D17 (IC50 values for Au-GSH-Dox and Dox were 7.9 μg/mL and 15.2 μg/mL, respectively) but not on the U2OS cell line. All concentrations of Au-GSH (ranging from 10 to 1000 μg/mL) were non-toxic in both cell lines. Inhibition of the D17 cell line with 100 μM verapamil resulted in an increase in free Dox but not in intracellular Au-GSH-Dox. The results indicate that Au-GSH-Dox may act as an effective drug in canine OSA by bypassing P-gp.
BackgroundThe chick embryo chorioallantoic membrane (CAM) model is well described in human medicine as a cost-effective, easy to perform preclinical oncological model for observing pro- and antiangiogenic response, tumor biology and metastasis. The main objective of this article was to present the modification of the CAM assay in order to evaluate tumor growth from two feline fibrosarcoma cell lines (FFS1, FFS3) and describe their morphological and histopathological features.ResultsThe authors described morphological and histopathological features of two feline fibrosarcoma cell lines (FFS1 and FFS3) grown on the CAM. Tumors from the FFS1 cell line showed high malignancy (grade III), while tumors from the FFS3 cell line were grade II. Proliferation markers (Ki-67 and PCNA) were determined and the positive correlation between PCNA and tumor grade (r = 0.8247; p < 0.001) was demonstrated, as opposed to Ki-67.ConclusionsThe results obtained indicate that PCNA may be helpful to evaluate the tumor grade, better than Ki-67, for feline fibrosarcomas. However, further investigations of proliferation marker, in bigger number of feline spontaneous fibrosarcomas and feline fibrosarcomas grown on the CAM from different cell lines, are needed to confirm these observations.
The chick embryo chorioallantoic membrane (CAM) model is extensively used in human medicine in preclinical oncological studies. The CAM model has several advantages: low cost, simple experimental approach, time saving and following “3R principles”. Research has shown that the human osteosarcoma cell lines U2OS, MMNG-HOS, and SAOS can form tumors on the CAM. In veterinary medicine, this has been described only for feline fibrosarcomas, feline mammary carcinomas and canine osteosarcomas. However, in case of canine osteosarcomas, it has been shown that only non-adherent osteosarcoma stem cells isolated from KTOSA5 and CSKOS cell lines have the ability to form microtumors on the CAM after an incubation period of 5 days, in contrast to adherent KTOSA5 and CSKOS cells. In the presented study, we have proven that the commercial adherent canine osteosarcoma cell line (D-17) can form vascularized tumors on the CAM after the incubation period of 10 days.
The present study evaluated the use of 3 types of Cysteine Protease Inhibitors (CPIs) with praziquantel (PZQ) as chemotherapy against schistosomiasis mansoni in mice. All groups were going to assessment of fluromethylketone (FMK), Vinyl Sulfone (VS) and Sodium Nitro Prussid (SNP) by measurement of parasitological, immunological and histological parameters. In our study, The ova count/gm liver or intestine on with PZQ treatment showed 99.1 and 95.2% Percent Reduction (PR), respectively compared to control group. The most effective CPI was FMK when combined with PZQ recording 99.8 and 99.6% PR for liver and intestine, respectively. Regarding to the oogram pattern, FMK, VS and SNP treatment either at 3 or 5 wk PI revealed marked decrease in the immature and mature ova counts and an increase of the dead ova percentages. The effect of CPIs was studied on the PR of Mean Granuloma Diameter (MGD) and Mean Granuloma Number (MGN) of infected treated groups compared to infected control and PZQ treated groups. FMK treatment proved to be highly was effective against S. mansoni in mice disintegrating ova and reduction in granulomatous size and numbers. The microscopic examination of liver sections of infected mice showed a large cellular granuloma with living central ova. sections of Infected mice liver treated with FMK or VS alone or combined with PZQ showed a great reduction in granuloma size as small cellular granuloma with central degenerated ova. We observed that these CPIs alone or combined with PZQ could effectively block schistosomal activity and prevented its growth and differentiation. Briefly, the best schistosomicidal effect of CPIs, that gained by drug administration orally in a dose of 50 mg kg(-1) mouse, was observed with FMK. This was followed by VS and lastly with SNP. These results gave evidence that CPIs can selectively arrest parasite replication without untoward toxicity to the host.
Introduction Appendicular osteosarcoma (OSA) is a highly aggressive and metastatic primary bone tumour in dogs. Standard therapy is amputation and adjuvant chemotherapy (e.g. with doxorubicin). Liposomal drug delivery may augment therapeutic efficacy and reduce negative side effects. Polyethylene glycol (PEG)-liposomal doxorubicin treats human metastatic cancers effectively. The study aimed was to evaluate PEG-liposomal doxorubicin’s inhibitory effect on canine metastatic proliferation and migration in vitro. It also aimed to appraise the drug’s extravasation inhibition in vivo using the human medicine–proven chick embryo chorioallantoic membrane ex ovo model. Material and Methods The canine D-17 OSA cell line was cultured and inoculated with decreasing concentrations of PEG-liposomal doxorubicin and conventional doxorubicin in a 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) test of cell viability, proliferation and cytotoxicity. Flow cytometry with Annexin V and Draq 7 staining confirmed the MTT test results, indicating dead, early and late apoptotic, and live cells. The inhibitory effect of the two preparations on cancer cell migration was investigated with a wound-healing assay. Culture plates seeded with cells were prepared. The cell monolayer was scratched and images of cells migrating to the scratch were captured at 0 h, 12 h and 24 h. Also, embryos were removed from three-day-incubated fertilised chicken eggs. On the 12th day, labelled D-17 cells were injected into each embryo. Embryos in one group received 100 μL of phosphate-buffered saline as controls, those in another group 30 μg/mL of PEG-liposomal doxorubicin, and those in the last group 6 μg/mL of conventional doxorubicin. The effectiveness of the intravascular administration of the D-17 cells was confirmed under a microscope. Results PEG-liposomal doxorubicin inhibited the migration of canine OSA cells more effectively than conventional doxorubicin (P ≤ 0.05). The ex ovo model showed that both drugs had similar impacts on canine metastatic OSA. Conclusion The liposomal form of the drug may be considered a potentially effective compound in canine metastatic OSA; nevertheless, further in vivo studies are essential to confirm this hypothesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.