Fungi are among the microorganisms able to generate electricity as a result of their metabolic processes. Throughout the last several years, a large number of papers on various microorganisms for current production in microbial fuel cells (MFCs) have been published; however, fungi still lack sufficient evaluation in this regard. In this review, we focus on fungi, paying special attention to their potential applicability to MFCs. Fungi used as anodic or cathodic catalysts, in different reactor configurations, with or without the addition of an exogenous mediator, are described. Contrary to bacteria, in which the mechanism of electron transfer is pretty well known, the mechanism of electron transfer in fungi-based MFCs has not been studied intensively. Thus, here we describe the main findings, which can be used as the starting point for future investigations. We show that fungi have the potential to act as electrogens or cathode catalysts, but MFCs based on bacteria–fungus interactions are especially interesting. The review presents the current state-of-the-art in the field of MFC systems exploiting fungi.
Fluorescent analogues provide important tools for biochemical/biophysical research. However, the analogues contain chemical modifications much larger than those known to affect ligand-binding, such as the inversion of a carbon centre or substitution of an atom. We lack experimental tools and protocols to select the most appropriate fluorescent analogue. Herein, we use several NMR spectroscopy methods, including Saturation Transfer Difference (STD), STD competition and transferred nuclear Overhauser effect spectroscopy (Tr-NOESY), as tools to select appropriate fluorescent probes. Annexin A6 (AnxA6) is a ubiquitous protein that forms in vitro GTP-induced ion channels. We used this protein as a model and screened guanosine triphosphate (GTP) and four fluorescent analogues against AnxA6. STD reported that the GTP moiety of all ligands made similar contacts with the protein, despite additional interactions between the fluorescent tags and AnxA6. Competition STD experiments verified that the analogues and GTP bind to the same site. Tr-NOESY indicated that the bound conformation of the base relative to ribose is altered for some analogues compared to GTP. MANT-GTP or the BODIPY thioester of guanosine 5'-O-(3-thiotriphosphate) are the most suitable fluorescent analogues for AnxA6, according to NMR. These results reveal NMR as a useful technique to select and design proper fluorescent tags for biochemical/biophysical assays.
El artículo seleccionado no se encuentra disponible por ahora a texto completo por no haber sido facilitado todavía por el investigador a cargo del archivo del mismo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.