Hydrolysis-resistant 3'-peptidyl-RNA conjugates that mimic tRNA termini represent a remarkable synthetic challenge, particularly if they contain amino acids with complex side-chain functionalities, such as arginines. Here we demonstrate a novel approach that combines solid-phase synthesis and bioconjugation to obtain these derivatives with high efficiency and purity. The key step is native chemical ligation of 3'-cysteinyl-RNA fragments to highly soluble peptide thioesters. The so-prepared 3'-peptidyl-RNA conjugates relate to resistance peptides that can render the ribosome resistant to macrolide antibiotics by a yet unknown ribosomal translation mechanism.
Flexibility exercised: Hydrolysis‐resistant 3 ′‐aminoacyl‐tRNA conjugates that contain a stable amide linkage instead of the natural ester are valuable substrates for biochemical studies of ribosomal processes. In a novel preparation of the stable E. coli initiator tRNA derivative 3′‐(N‐formylmethionyl)amino‐tRNAfMet the key feature is the synthesis of 3′‐azido oligoribonucleotides using a new functionalized solid support.
Fermentation of a Penicillium sp. isolated from a surface-sterilized thallus segment of the brown alga Xiphophora gladiata, collected from Macrocarpa Point, Otago, New Zealand, in half-strength potato dextrose broth led to the isolation and characterization of three alkaloids: the known N-hydroxy-2-pyridone, PF1140 (1), and two new 2-pyridones, 2 and 3.
Genetic code expansion and reprogramming methodologies allow us to incorporate non-canonical amino acids (ncAAs) bearing various functional groups, such as fluorescent groups, bioorthogonal functional groups, and post-translational modifications, into a desired position or multiple positions in polypeptides both in vitro and in vivo. In order to efficiently incorporate a wide range of ncAAs, several methodologies have been developed, such as orthogonal aminoacyl-tRNA-synthetase (AARS)–tRNA pairs, aminoacylation ribozymes, frame-shift suppression of quadruplet codons, and engineered ribosomes. More recently, it has been reported that an engineered translation system specifically utilizes an artificially built genetic code and functions orthogonally to naturally occurring counterpart. In this review we summarize recent advances in the field of ribosomal polypeptide synthesis containing ncAAs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.