We propose a modified method of acquisition and analysis of Spectral Optical Coherence Tomography (SOCT) data to provide information about flow velocities. The idea behind this method is to acquire a set of SOCT spectral fringes dependent on time followed by a numerical analysis using two independent Fourier transformations performed in time and optical frequency domains. Therefore, we propose calling this method as joint Spectral and Time domain Optical Coherence Tomography (joint STdOCT). The flow velocities obtained by joint STdOCT are compared with the ones obtained by known, phase-resolved SOCT. We observe that STdOCT estimation is more robust for measurements with low signal to noise ratio (SNR) as well as in conditions of close-to-limit velocity measurements. We also demonstrate that velocity measurement performed with STdOCT method is more sensitive than the one obtained by the phase-resolved SOCT. The method is applied to biomedical imaging, in particular to in vivo measurements of retinal blood circulation. The applicability of STdOCT different measurement modes for in vivo examinations, including 1, 5 and 40 mus of CCD exposure time, is discussed.
We introduce a new type of scanning protocols, called segmented protocols, which enable extracting multi-range flow velocity information from a single Spectral OCT data set. The protocols are evaluated using a well defined flow in a glass capillary. As an example of in vivo studies, we demonstrate two- and three-dimensional imaging of the retinal vascular system in the eyes of healthy volunteers. The flow velocity detection is performed using a method of Joint Spectral and Time domain OCT. Velocity ranging is demonstrated in imaging of retinal vasculature in the macular region and in the optic disk area characterized by different flow velocity values. Additionally, an enhanced visualization of retinal capillary network is presented in the close proximity to macula.
We identify and analyze factors influencing sensitivity drop-off in Spectral OCT and propose a system employing an Optical Frequency Comb (OFC) to verify this analysis. Spectral Optical Coherence Tomography using a method based on an optical frequency comb is demonstrated. Since the spectrum sampling function is determined by the comb rather than detector pixel distribution, this method allows to overcome limitations of high resolution Fourier-domain OCT techniques. Additionally, the presented technique also enables increased imaging range while preserving high axial resolution. High resolution cross-sectional images of biological samples obtained with the proposed technique are presented.
We describe how the simple phase difference averaging causes a systematic bias in the velocity estimation obtained by phase-resolved Fourier domain optical coherence tomography (FdOCT). The magnitude of this bias depends on the signal-to-noise ratio as well as proximity of the measured velocity to the limits of the velocity range. We demonstrate the proper way of data processing, which enables obtaining velocity values free of this error. We validate the improved technique by measurements of flow velocity in glass capillaries, in human retinal vessels, and we compare the results with those obtained by standard phase-resolved FdOCT.
Recently, joint Spectral and Time domain Optical Coherence Tomography (joint STdOCT) has been proposed to measure ocular blood flow velocity. Limitations of CCD technology allowed only for two-dimensional imaging at that time. In this paper we demonstrate fast three-dimensional STdOCT based on ultrahigh speed CMOS camera. Proposed method is straightforward, fully automatic and does not require any advanced image processing techniques. Three-dimensional distributions of axial velocity components of the blood in human eye vasculature are presented: in retinal and, for the first time, in choroidal layer. Different factors that affect quality of velocity images are discussed. Additionally, the quantitative measurement allows to observe a new interesting optical phenomenon - random Doppler shift in OCT signals that forms a vascular pattern at the depth of sclera.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.