Escherichia coli transports inorganic phosphate (Pi) by the low-affinity transport system, Pit. When the level of the external Pi is lower than 20 microM, another transport system, Pst, is induced with a Kt of 0.25 microM. An outer-membrane porin, PhoE, with a Km of about 1 microM is also induced. The outer membrane allows the intake of organic phosphates which are degraded to Pi by phosphatases in the periplasm. The Pi-binding protein will capture the free Pi produced in the periplasm and direct it to the transmembrane channel of the cytoplasmic membrane. The channel consists of two proteins, PstA and PstC, which have six and five transmembrane helices, respectively. On the cytoplasmic side of the membrane the channel is linked to the PstB protein, which carries a nucleotide (probably ATP)-binding site. PstB probably provides the energy required by the channel to free Pi. The Pst system has two functions in E. coli: (i) the transport of Pi, and (ii) the negative regulation of the phosphate regulon (a complex of 20 proteins mostly related to organic phosphate transport). It is remarkable that these two functions are not related, since the repressibility of the regulon depends on the integral structure of Pst (PiBP + PstA + PstC + PstB) and not on the Pi transported. Another gene of the pst operon, phoU, produces a protein involved in the negative regulation of the Pho regulon, but the mechanism of this function has not been explained. Thus the regulatory function of the Pst system remains obscure. Its basal level, present when Pi is abundant, is sufficient to repress the Pho regulon but the negative regulatory function is lost upon Pi starvation.
Most of the essential cellular components, like nucleic acids, lipids and sugars, are phosphorylated. The phosphate equilibrium in Escherichia coli is regulated by the phosphate (Pi) input from the surrounding medium. Some 90 proteins are synthesized at an increased rate during Pi starvation and the global control of the cellular metabolism requires cross-talk with other regulatory mechanisms. Since the Pi concentration is normally low in E. coli's natural habitat, these cells have devised a mechanism for synthesis of about 15 proteins to accomplish two specific functions: transport of Pi and its intracellular regulation. The synthesis of these proteins is controlled by two genes (the phoB-phoR operon), involving both negative and positive functions. PhoR protein is a histidine protein kinase, induced in Pi starvation and is a transmembrane protein. It phosphorylates the regulator protein PhoB which is also Pi starvation-induced. The PhoB phosphorylated form binds specifically to a DNA sequence of 18 nucleotides (the pho Box), which is part of the promoters of the Pho genes. The genes controlled by phoB constitute the Pho regulon. The repression of phoA (the gene encoding alkaline phosphatase) by high Pi concentrations in the medium requires the presence of an intact Pst operon (pstS, pstC, pstA, pstB and phoU) and phoR. The products of pstA and pstC are membrane bound, whereas the product of pstS is periplasmic and PstB and PhoU proteins are cytoplasmic. The function of the PhoU protein may be regulated by cofactor nucleotides and may be involved in signaling the activation of the regulon via PhoR.
The negative regulatory function of PhoU in alkaline phosphatase (AP) synthesis was suggested by the behavior of K10 phoU35 carrying a missense mutation whose product was detected by immunoblotting. To define more clearly the regulatory function of this protein for the synthesis of AP, we constructed a null mutation. The constitutive synthesis of AP in this phoU deletion strain confirmed the negative role of PhoU. However, the expression of the PhoU protein from an isopropyl-(-D-thiogalactopyranoside-inducible promoter had no effect on the repression of AP synthesis. Furthermore, the involvement of PhoU in free-Pi uptake was demonstrated. These results provide evidence that PhoU participates in P, transport and in the regulatory role of the phosphate-specific transport system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.