In the last few years, small molecules endowed with different heterocyclic scaffolds have been developed as kinase inhibitors. Some of them are being tested at preclinical or clinical levels for the potential treatment of neuroblastoma (NB). This disease is the most common extracranial solid tumor in childhood and is responsible for 10% to 15% of pediatric cancer deaths. Despite the availability of some treatments, including the use of very toxic cytotoxic chemotherapeutic agents, high-risk (HR)-NB patients still have a poor prognosis and a survival rate below 50%. For these reasons, new pharmacological options are urgently needed. This review focuses on synthetic heterocyclic compounds published in the last five years, which showed at least some activity on this severe disease and act as kinase inhibitors. The specific mechanism of action, selectivity, and biological activity of these drug candidates are described, when established. Moreover, the most remarkable clinical trials are reported. Importantly, kinase inhibitors approved for other diseases have shown to be active and endowed with lower toxicity compared to conventional cytotoxic agents. The data collected in this article can be particularly useful for the researchers working in this area.
Src is a non-receptor tyrosine kinase (TK) whose involvement in cancer, including glioblastoma (GBM), has been extensively demonstrated. In this context, we started from our in-house library of pyrazolo[3,4-d]pyrimidines that are active as Src and/or Bcr-Abl TK inhibitors and performed a lead optimization study to discover a new generation derivative that is suitable for Src kinase targeting. We synthesized a library of 19 compounds, 2a-s. Among these, compound 2a (SI388) was identified as the most potent Src inhibitor. Based on the cell-free results, we investigated the effect of SI388 in 2D and 3D GBM cellular models. Interestingly, SI388 significantly inhibits Src kinase, and therefore affects cell viability, tumorigenicity and enhances cancer cell sensitivity to ionizing radiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.