IntroductionInsulin icodec is a novel, long-acting insulin analog designed to cover basal insulin requirements with once-weekly subcutaneous administration. Here we describe the molecular engineering and the biological and pharmacological properties of insulin icodec.Research design and methodsA number of in vitro assays measuring receptor binding, intracellular signaling as well as cellular metabolic and mitogenic responses were used to characterize the biological properties of insulin icodec. To evaluate the pharmacological properties of insulin icodec in individuals with type 2 diabetes, a randomized, double-blind, double-dummy, active-controlled, multiple-dose, dose escalation trial was conducted.ResultsThe long half-life of insulin icodec was achieved by introducing modifications to the insulin molecule aiming to obtain a safe, albumin-bound circulating depot of insulin icodec, providing protracted insulin action and clearance. Addition of a C20 fatty diacid-containing side chain imparts strong, reversible albumin binding, while three amino acid substitutions (A14E, B16H and B25H) provide molecular stability and contribute to attenuating insulin receptor (IR) binding and clearance, further prolonging the half-life. In vitro cell-based studies showed that insulin icodec activates the same dose-dependent IR-mediated signaling and metabolic responses as native human insulin (HI). The affinity of insulin icodec for the insulin-like growth factor-1 receptor was proportionately lower than its binding to the IR, and the in vitro mitogenic effect of insulin icodec in various human cells was low relative to HI. The clinical pharmacology trial in people with type 2 diabetes showed that insulin icodec was well tolerated and has pharmacokinetic/pharmacodynamic properties that are suited for once-weekly dosing, with a mean half-life of 196 hours and close to even distribution of glucose-lowering effect over the entire dosing interval of 1 week.ConclusionsThe molecular modifications introduced into insulin icodec provide a novel basal insulin with biological and pharmacokinetic/pharmacodynamic properties suitable for once-weekly dosing.Trial registration numberNCT02964104.
Human exonuclease 1 (hEXO1) has been implicated in DNA mismatch repair (MMR), replication, and recombination, but the nature of its interaction with these cellular processes is still ambiguous. We show that hEXO1 colocalizes with proliferating cell nuclear antigen (PCNA) at DNA replication sites and that the C-terminal region of hEXO1 is sufficient for this localization. We also show that both hMLH1-hPMS2 (MutLa) and hMLH1-hEXO1 complexes are formed in a reaction mixture containing all three proteins. Moreover, hEXO1 5 0 double-stranded exonuclease activity on a homoduplex substrate but not on a substrate containing a G/T mismatch was inhibited by complex formation with hMSH2-hMSH6 (MutSa) or MutLa. Taken together, the results support a model in which hEXO1 plays a role in events at the replication sites as well as a functional role in the MMR and/or recombination processes.
Aims/HypothesisThere is controversy with respect to molecular characteristics of insulin analogues. We report a series of experiments forming a comprehensive characterisation of the long acting insulin analogues, glargine and detemir, in comparison with human insulin, IGF-1, and the super-mitogenic insulin, X10.MethodsWe measured binding of ligands to membrane-bound and solubilised receptors, receptor activation and mitogenicity in a number of cell types.ResultsDetemir and glargine each displayed a balanced affinity for insulin receptor (IR) isoforms A and B. This was also true for X10, whereas IGF-1 had a higher affinity for IR-A than IR-B. X10 and glargine both exhibited a higher relative IGF-1R than IR binding affinity, whereas detemir displayed an IGF-1R:IR binding ratio of ≤1. Ligands with high relative IGF-1R affinity also had high affinity for IR/IGF-1R hybrid receptors. In general, the relative binding affinities of the analogues were reflected in their ability to phosphorylate the IR and IGF-1R. Detailed analysis revealed that X10, in contrast to the other ligands, seemed to evoke a preferential phosphorylation of juxtamembrane and kinase domain phosphorylation sites of the IR. Sustained phosphorylation was only observed from the IR after stimulation with X10, and after stimulation with IGF-1 from the IGF-1R. Both X10 and glargine showed an increased mitogenic potency compared to human insulin in cells expressing many IGF-1Rs, whereas only X10 showed increased mitogenicity in cells expressing many IRs.ConclusionsDetailed analysis of receptor binding, activation and in vitro mitogenicity indicated no molecular safety concern with detemir.
Hereditary nonpolyposis colorectal cancer (HNPCC) or Lynch syndrome is caused by DNA variations in the DNA mismatch repair (MMR) genes MSH2, MLH1, MSH6, and PMS2. Many of the mutations identified result in premature termination of translation and thus in loss-of-function of the encoded mutated protein. These DNA variations are thought to be pathogenic mutations. However, some patients carry other DNA mutations, referred to as unclassified variants (UVs), which do not lead to such a premature termination of translation; it is not known whether these contribute to the disease phenotype or merely represent rare polymorphisms. This is a major problem which has direct clinical consequences. Several criteria can be used to classify these UVs, such as: whether they segregate with the disease within pedigrees, are absent in control individuals, show a change of amino acid polarity or size, provoke an amino acid change in a domain that is evolutionary conserved and/or shared between proteins belonging to the same protein family, or show altered function in an in vitro assay. In this review we discuss the various functional assays reported for the HNPCC-associated MMR proteins and the outcomes of these tests on UVs identified in patients diagnosed with or suspected of having HNPCC. We conclude that a large proportion of MMR UVs are likely to be pathogenic, suggesting that missense variants of MMR proteins do indeed play a role in HNPCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.