Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.When citing, please reference the published version.
Take down policyWhile the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.
Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.When citing, please reference the published version.
Take down policyWhile the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.
Hypoglycemia is associated with increased activity in the low-frequency bands in the electroencephalogram (EEG). We investigated whether hypoglycemia awareness and unawareness are associated with different hypoglycemia-associated EEG changes in patients with type 1 diabetes. Twenty-four patients participated in the study: 10 with normal hypoglycemia awareness and 14 with hypoglycemia unawareness. The patients were studied at normoglycemia (5–6 mmol/L) and hypoglycemia (2.0–2.5 mmol/L), and during recovery (5–6 mmol/L) by hyperinsulinemic glucose clamp. During each 1-h period, EEG, cognitive function, and hypoglycemia symptom scores were recorded, and the counterregulatory hormonal response was measured. Quantitative EEG analysis showed that the absolute amplitude of the θ band and α-θ band up to doubled during hypoglycemia with no difference between the two groups. In the recovery period, the θ amplitude remained increased. Cognitive function declined equally during hypoglycemia in both groups and during recovery reaction time was still prolonged in a subset of tests. The aware group reported higher hypoglycemia symptom scores and had higher epinephrine and cortisol responses compared with the unaware group. In patients with type 1 diabetes, EEG changes and cognitive performance during hypoglycemia are not affected by awareness status during a single insulin-induced episode with hypoglycemia.
Previous literature has demonstrated that hypoglycemic events in patients with type 1 diabetes (T1D) are associated with measurable scalp electroencephalography (EEG) changes in power spectral density. In the present study, we used a dataset of 19-channel scalp EEG recordings in 34 patients with T1D who underwent a hyperinsulinemic–hypoglycemic clamp study. We found that hypoglycemic events are also characterized by EEG complexity changes that are quantifiable at the single-channel level through empirical conditional and permutation entropy and fractal dimension indices, i.e., the Higuchi index, residuals, and tortuosity. Moreover, we demonstrated that the EEG complexity indices computed in parallel in more than one channel can be used as the input for a neural network aimed at identifying hypoglycemia and euglycemia. The accuracy was about 90%, suggesting that nonlinear indices applied to EEG signals might be useful in revealing hypoglycemic events from EEG recordings in patients with T1D.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.