Laser damage phenomena in fused silica are currently under study because of numerous related high power laser applications. Nanosized defects are believed to be responsible for some laser damage initiation. In order to predict and to quantify this initiation process, engineered submicronic gold defects were embedded in silica. The study of these samples by localized pulsed irradiation of isolated gold particles coupled with Nomarski, atomic force and photothermal microscope observations permits us to discriminate between two distinct stages of material modification: one detectable at the surface and the second in the neighbourhood of the embedded particle. Comparison between the observations and simulations results in good agreement if we assume that inclusion melting initiates the damage.
International audienceInorder to understand laser-induced damage in glass, we subjected engineeredSiO2 thin films containing sub-micron gold inclusions to high fluences,and observed the results using several means of analysis. Wefound decoupling in time between the emission of gold andthat of silicon with samples containing gold spheres of diameter3 nm. We have analyzed the changes in the silicaoptical absorption at 1064 nm, using photothermal deflection microscopy. Wefind, upon exceeding a sharp fluence threshold, a thousand-fold increasein absorption of the silica matrix around the inclusion. Weconclude that ions from the inclusion permeate the surrounding silica,and form a highly absorbent mixture
Laser-induced damage in bare glass substrates and thin films has long been widely acknowledged as a localized phenomenon associated with the presence of micrometer and submicrometer scale defects. The scanning of both optical absorption and scattering allows us to discriminate between absorbing and nonabsorbing defects and can give specific information about the origin of the defects. We investigate the spectral properties of defects in thin films and fused-silica surfaces. Absorbing and scattering defects are studied at different wavelengths in the ultraviolet, visible, and infrared ranges. Absorbing defects are shown to be highly wavelength dependent, whereas we have observed significant correlation between scattering defects.
An integrated setup allowing high resolution photothermal microscopy and laser damage measurements at the same wavelength has been implemented. The microscope is based on photothermal deflection of a transmitted probe beam : the probe beam (633 nm wavelength) and the CW pump beam (1.06 microm wavelength) are collinear and focused through the same objective. In-situ laser irradiation tests are performed thanks to a pulsed beam (1.06 microm wavelength and 6 nanosecond pulse). We describe this new facility and show that it is well adapted to the detection of sub-micronic absorbing defects, that, once located, can be precisely aimed and irradiated. Photothermal mappings are performed before and after shot, on metallic inclusions in dielectric. Results obtained on gold inclusions of about 600 nm in diameter embedded in silica are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.