Four cis‐acting elements, designated as Boxes I, II, III and IV, have previously been identified as functionally relevant components of the light‐responsive chalcone synthase (CHS) promoter in parsley (Petroselinum crispum). This paper describes the isolation of three cDNAs encoding proteins which bind specifically to Box II, one of two cis‐acting elements found within a 52 bp CHS promoter region shown here to be sufficient for light responsiveness in parsley. The deduced amino acid sequences of all three proteins reveal conserved basic and leucine zipper domains characteristic of transcription factors of the bZIP class. Nucleotide sequences recognized by these factors contain an ACGT motif common to many cis‐acting elements. Therefore, we have termed the proteins CPRF‐1, −2 and −3 (Common Plant Regulatory Factor). The characteristics of CPRF‐1 binding to Box II and the timing of transient CPRF‐1 mRNA accumulation during light exposure of previously dark‐grown parsley cells are consistent with the hypothesis that this factor participates in the light‐mediated activation of the CHS gene in parsley.
The genetic fine structure of cis-acting sequences previously shown to be necessary for light-regulated expression in the promoter of the parsley (Petroselinum crispum) chalcone synthase gene was analyzed. Site-directed mutations and changes in spacing between cis elements were measured in transient expression assays in parsley protoplasts. Clustered point mutations allowed assignment of functional borders. Single-base substitutions within a highly conserved cis element (box II/G box) defined a critical core of seven bases, 5'-ACGTGGC-3'. It is functionally equivalent to a second sequence-related element (box III), which could replace box II in an orientation-dependent manner. The activity of box II required the presence of another juxtaposed element (box I) at a defined distance. No distance requirement was observed between the two large separable promoter regions known to independently confer light-regulated expression. These data support our hypothesis that a cis-acting sequence that is present in a limited number of diversely regulated plant genes gains its functional capacity and specificity by combinatorial diversity involving flanking partner elements.
Worldwide, qualitative methods based on PCR are most commonly used as screening tools for genetically modified material in food and feed. However, the increasing number and diversity of genetically modified organisms (GMO) require effective methods for simultaneously detecting several genetic elements marking the presence of transgenic events. Herein we describe the development and validation of a pentaplex, as well as complementary triplex and duplex real-time PCR assays, for the detection of the most common screening elements found in commercialized GMOs: P-35S, T-nos, ctp2-cp4-epsps, bar, and pat. The use of these screening assays allows the coverage of many GMO events globally approved for commercialization. Each multiplex real-time PCR assay shows high specificity and sensitivity with an absolute limit of detection below 20 copies for the targeted sequences. We demonstrate by intra- and interlaboratory tests that the assays are robust as well as cost- and time-effective for GMO screening if applied in routine GMO analysis.
BackgroundSince their first commercialization, the diversity of taxa and the genetic composition of transgene sequences in genetically modified plants (GMOs) are constantly increasing. To date, the detection of GMOs and derived products is commonly performed by PCR-based methods targeting specific DNA sequences introduced into the host genome. Information available regarding the GMOs’ molecular characterization is dispersed and not appropriately organized. For this reason, GMO testing is very challenging and requires more complex screening strategies and decision making schemes, demanding in return the use of efficient bioinformatics tools relying on reliable information.DescriptionThe GMOseek matrix was built as a comprehensive, online open-access tabulated database which provides a reliable, comprehensive and user-friendly overview of 328 GMO events and 247 different genetic elements (status: 18/07/2013). The GMOseek matrix is aiming to facilitate GMO detection from plant origin at different phases of the analysis. It assists in selecting the targets for a screening analysis, interpreting the screening results, checking the occurrence of a screening element in a group of selected GMOs, identifying gaps in the available pool of GMO detection methods, and designing a decision tree. The GMOseek matrix is an independent database with effective functionalities in a format facilitating transferability to other platforms. Data were collected from all available sources and experimentally tested where detection methods and certified reference materials (CRMs) were available.ConclusionsThe GMOseek matrix is currently a unique and very valuable tool with reliable information on GMOs from plant origin and their present genetic elements that enables further development of appropriate strategies for GMO detection. It is flexible enough to be further updated with new information and integrated in different applications and platforms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.