Small interfering RNA (siRNA) has increased the hope for highly-efficient treatment of gene-related diseases. However, the stable and efficient delivery of therapeutic nucleic acids is a prerequisite for the successful clinical translation of RNA interfering therapy. To achieve this, we condensed the low molecular weight polyethyleneimine (PEI, Mw < 2000) with 2,6-pyridinedicarboxaldehyde (PDA) to synthesize a biologically responsive and degradable cationic polymer (abbreviated to PDAPEI) which was utilized as a gene vector for the delivery of a VEGF-A shRNA expression plasmid DNA (pDNA). The resulting electrostatic interaction between PDAPEI and pDNA led to the self-assembly of nanoscale polyplexes with suitable particle size and stable zeta potential. The PDAPEI/pDNA polyplexes demonstrated an outstanding gene transfection and silencing efficiency at 30 w/w ratio, as well as negligible cytotoxicity. Also, the designed polymer showed no stimulation to the innate immune system. Moreover, compared with PEI 25 KDa, the polyplexes accomplished comparatively better anti-angiogenesis efficacy, which resulted in the inhibition of tumor growth in subcutaneous tumor mice models. In conclusion, PDAPEI has great potential to be a gene delivery vector for cancer therapy.
Protein drugs have great potential as targeted therapies, yet their application suffers from several drawbacks, such as instability, short half‐life, and adverse immune responses. Thus, protein delivery approaches based on stimuli‐responsive nanocarriers can provide effective strategies for selectively enhancing the availability and activation of proteins in targeted tissues. Herein, polymeric micelles with the ability of encapsulating proteins are developed via concurrent ion complexation and pH‐cleavable covalent bonding between proteins and block copolymers directed to pH‐triggered release of the protein payload. Carboxydimethylmaleic anhydride (CDM) is selected as the pH‐sensitive moiety, since the CDMamide bond is stable at physiological pH (pH 7.4), while it cleaves at pH 6.5, that is, the pathophysiological pH of tumors and inflammatory tissues. By using poly(ethylene glycol)‐poly(l‐lysine) block copolymers having 45% CDM addition, different proteins with various sizes and isoelectric points are loaded successfully. By using myoglobin‐loaded micelles (myo/m) as a model, the stability of the micelles in physiological conditions and the dissociation and release of functional myoglobin at pH 6.5 are successfully confirmed. Moreover, myo/m shows extended half‐life in blood compared to free myoglobin and micelles assembled solely by polyion complex, indicating the potential of this system for in vivo delivery of proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.