We present SOFTii, a flexible input system for topography design and continuous control via external force. Our intent is to provide a tactile metaphor for pressure-based surface input. In this study, two prototypes of SOFTii have been fabricated: (a) The first prototype has one pressure surface for topography design with everyday tangible objects, (b) the second prototype, having two force input surfaces, performs as a deformable controller for video games and continuous shape modeling using a SVM algorithm. Both prototypes of SOFTii are constructed by layering Polymethylsiloxane (PDMS), ITO coated PET film, and conductive fabric and foam. The layer configuration allows the capturing of local pressure on the SOFTii surface via distributed electrodes. Here we further discuss the implementation of the device with possible usage scenarios.
No abstract
We present BendID, a bendable input device that recognizes the location, magnitude and direction of its deformation. We use BendID to provide users with a tactile metaphor for pressure based input. The device is constructed by layering an array of indium tin oxide (ITO)-coated PET film electrodes on a Polymethylsiloxane (PDMS) sheet, which is sandwiched between conductive foams. The pressure values that are interpreted from the ITO electrodes are classified using a Support Vector Machine (SVM) algorithm via the Weka library to identify the direction and location of bending. A polynomial regression model is also employed to estimate the overall magnitude of the pressure from the device. A model then maps these variables to a GUI to perform tasks. In this preliminary paper, we demonstrate this device by implementing it as an interface for 3D shape bending and a game controller.
Electronic messages are encoded and transmitted mechanically via steel balls.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.