Pompe disease results from a mutation in the acid a-glucosidase gene leading to lysosomal glycogen accumulation. Respiratory insufficiency is common, and the current U.S. Food and Drug Administration-approved treatment, enzyme replacement, has limited effectiveness. Ampakines are drugs that enhance a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor responses and can increase respiratory motor drive. Recent work indicates that respiratory motor drive can be blunted in Pompe disease, and thus pharmacologic stimulation of breathing may be beneficial. Using a murine Pompe model with the most severe clinical genotype (the Gaa 2/2 mouse), our primary objective was to test the hypothesis that ampakines can stimulate respiratory motor output and increase ventilation. Our second objective was to confirm that neuropathology was present in Pompe mouse medullary respiratory control neurons.The impact of ampakine CX717 on breathing was determined via phrenic and hypoglossal nerve recordings in anesthetized mice and whole-body plethysmography in unanesthetized mice. The medulla was examined using standard histological methods coupled with immunochemical markers of respiratory control neurons. Ampakine CX717 robustly increased phrenic and hypoglossal inspiratory bursting and reduced respiratory cycle variability in anesthetized Pompe mice, and it increased inspiratory tidal volume in unanesthetized Pompe mice. CX717 did not significantly alter these variables in wild-type mice. Medullary respiratory neurons showed extensive histopathology in Pompe mice. Ampakines stimulate respiratory neuromotor output and ventilation in Pompe mice, and therefore they have potential as an adjunctive therapy in Pompe disease.
Ketorolac is a nonsteroidal anti‐inflammatory drug that possesses potent analgesic activity comparable to morphine. The opioid shortage in the United States has led to an unreliable supply of opioids for use in rehabilitation facilities, thus underscoring the need for research on the safe and effective use of nonopioid alternatives. The goal of this study was to determine the pharmacokinetics of ketorolac after a single 0.25 mg/kg intramuscular injection administered to injured Eastern box turtles (Terrapene carolina carolina). A sparse blood sampling protocol was used to collect samples from 32 wild turtles that presented to the Turtle Rescue Team at North Carolina State University for traumatic injuries. Blood was collected from 0 to 24 hr after injection and analyzed via high‐pressure liquid chromatography (HPLC). A nonlinear mixed‐effects (NLME) model was fitted to the data to obtain typical values for population parameters. Using this approach, we identified a long half‐life (T1/2) of 9.78 hr and a volume of distribution (Vss) of 0.26 L/kg. We have concluded that this long T1/2 for a dose of 0.25 mg/kg ketorolac‐injected IM provides plasma levels above a previously published target level for 24‐hour analgesia to allow for once daily dosing.
Hematology, plasma biochemistry, and blood gas analysis were performed on venous samples obtained from free-ranging Eastern Copperheads (Agkistrodon contortrix) and Eastern Ratsnakes (Pantherophis alleghaniensis) in central North Carolina during a mark-recapture study conducted from April to October 2015 at the North Carolina Zoo. Blood samples were collected from 31 (15 male and 16 female) free-ranging copperheads and 34 (20 male and 14 female) free-ranging ratsnakes at the beginning and end of restraint. Restraint was performed for morphometric measurements, sex determination, and identification via placement of intracelomic passive integrated transponder (PIT) tags and marking of ventral scutes with a handheld electrocautery unit. Blood gas analytes were measured at the beginning of restraint and compared to analytes measured at the end to evaluate for changes secondary to handling. Total restraint time prior to the first blood sampling was 1.4 ± 0.4 mins (mean ± SD) and 1.0 ± 0.2 mins (mean ± SD) and restraint time prior to second blood sampling was 12.5 ± 2.4 mins (mean ± SD) and 13.5 ± 3.4 mins (mean ± SD) for copperheads and ratsnakes, respectively. Blood lactate concentrations at the beginning of restraint were similar for both species. Lactate concentrations increased significantly and pH decreased significantly for both species at the end of restraint when compared to the beginning of restraint. Furthermore, lactate concentrations at the end of restraint were significantly elevated in ratsnakes compared to copperheads. This study provides guidelines for interpretation of venous hematology, plasma biochemistry, and blood gas values for free-ranging copperheads and ratsnakes in central North Carolina and demonstrates the physiological response to venous blood gas analytes secondary to capture and restraint.
Ceftazidime, a third-generation cephalosporin, is important for treating opportunistic bacterial infections in turtles. Antibacterial dosage regimens are not well established for wild turtles and are often extrapolated from other reptiles or mammals. This investigation used a population pharmacokinetic approach to study ceftazidime in wild turtles presented for rehabilitation. Ceftazidime was administered to 24 wild turtles presented to the Turtle Rescue Team at North Carolina State University. A sparse blood sampling protocol was used to collect samples from 0 to 120 hr with three samples per individual after injection. Plasma samples were analyzed by high-pressure liquid chromatography (HPLC). A nonlinear mixed-effects model (NLME) was fitted to the data to determine typical values for population parameters. We identified a long half-life (T½) of approximately 35 hr and volume of distribution (V ) of 0.26 L/kg. We concluded that this long T½ will allow for a dose of 20 mg/kg injected IM to maintain concentrations above the MIC of most wild-type bacteria for 5 days. Because of long intervals between injections, stability of stored formulations was measured and showed that 90% strength was maintained for 120 hr when stored in the refrigerator and for 25 days when stored in the freezer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.