The successful transition of any nanocrystal-based product from the research phase to the commercial arena hinges on the ability to produce the required nanomaterial on large scales. The synthesis of colloidal nanocrystals using a heat-up (non-injection) method is a reliable means to achieve high quality nanomaterials on large scales with little or no batch-to-batch variation. In this class of synthesis precursors are heated within a reaction medium to induce a chemical reaction that yields monomer for nucleation and growth. Use of the heat-up technique circumvents the pitfalls of mixing time and poor heat management inherent to classical “hot-injection” methods. In heat-up syntheses monomer is produced in a more continuous fashion during the heating stage, making it more difficult to separate the nucleation and growth stages of the reaction, a factor that is conventionally considered detrimental toward achieving homogeneous colloidal dispersions. However, through the judicious selection of precursors, stabilizers, and reaction heating rates, these stages can be managed to yield colloids of comparable quality to those achieved via classical hot-injection methods. In this review we provide the reader with a fundamental basis upon which to understand the reaction requirements for achieving such favorable growth conditions. Given that the most important consideration in these reactions is precursor (and stabilizer) selection, we also provide an exposition of the precursor chemistry appropriate to achieving high quality products when using heat-up techniques. These topics form the foundation for critically evaluating the field of heat-up nanocrystal synthesis to date, including the synthesis of binary, ternary, and quaternary metal chalcogenide and pnictogenide nanocrystals, as well as metallic, metal oxide, and f-block conaining nanocrystals.
The development of nonfullerene acceptors (NFAs), which are used to replace fullerene derivatives in organic solar cells (OSCs) due to their extended light absorption and tunable energy levels, has seen impressive progress in the past few years. [1][2][3][4] A range of new NFAs with different building blocks and geometrical dimensions has been designed to boost the power conversion efficiency (PCE) of OSCs. Among the highest performing NFAs, linear rod-like acceptor-donor-acceptor (A-D-A) structures incorporating fused ladder-type aromatics have attracted much interest. Common donor units include 4,9-dihydro-s-indaceno[1,2-b:5,6-b′]dithiophene (IDT) [5][6][7][8][9] and 6,12-dihydro-dithienoindeno [10][11][12][13][14][15][16][17][18] In both cases, the fused core facilitates π-electron delocalization and improves the π-π stacking between molecules, hence enhancing the intrinsic charge carrier mobility.In 2015, Zhan and coworkers reported a new NFA, 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11--b′]dithiophene (ITIC) (Scheme 1), which is comprised an electron-donating IDTT-based core flanked by two electron-withdrawing units of 1,1-dicyanomethylene-3-indanone (IC), that exhibited a promising PCE of 6.8% at that time. [10] Since then, many strategies have been applied to modify the structure of ITIC in order to adjust the absorption spectra and energy levels to further improve the PCE, for example, by changing the side chains, [17,18] extending the conjugation length, [19][20][21][22] and substituting the end acceptor groups. [13][14][15][16] To date, a few systems based on these NFAs have achieved a PCE of over 10%. [5,[13][14][15]18,20,22] However, it is noticeable that in all cases these NFAs incorporate phenylalkyl or thienylalkyl side chains as the solubilizing groups on the fused core. These aryl-based side chains facilitate the synthesis of the IDTT core under Friedel-Crafts conditions via the formation of stable triaryl cations. However, since the nature of the side chains has a
CsPbI nanocrystals suffer from a facile cubic perovskite to orthorhombic phase transformation, which deteriorates their appealing optoelectronic properties. Here, we report a new colloidal synthesis that replaces the conventionally used oleic acid with an alkyl phosphinic acid to grow high-quality, phase-stable cubic perovskite CsPbI nanocrystals.
A variety of deposition methods for two-dimensional crystals have been demonstrated; however, their wafer-scale deposition remains a challenge. Here we introduce a technique for depositing and patterning of wafer-scale two-dimensional metal chalcogenide compounds by transforming the native interfacial metal oxide layer of low melting point metal precursors (group III and IV) in liquid form. In an oxygen-containing atmosphere, these metals establish an atomically thin oxide layer in a self-limiting reaction. The layer increases the wettability of the liquid metal placed on oxygen-terminated substrates, leaving the thin oxide layer behind. In the case of liquid gallium, the oxide skin attaches exclusively to a substrate and is then sulfurized via a relatively low temperature process. By controlling the surface chemistry of the substrate, we produce large area two-dimensional semiconducting GaS of unit cell thickness (∼1.5 nm). The presented deposition and patterning method offers great commercial potential for wafer-scale processes.
Plasmonic metal oxide nanocrystals bridge the optoelectronic gap between semiconductors and metals. In this study, we report a facile, non-injection synthesis of ZnO nanocrystals doped with Al, Ga, or In. The reaction readily permits dopant/zinc atomic ratios of over 15%, is amenable to high precursor concentrations (0.2 M and greater), and provides high reaction yields (>90%). The resulting colloidal dispersions exhibit high transparency in the visible spectrum and a wavelength-tunable infrared absorption, which arises from a dopant-induced surface plasmon resonance. Through a detailed investigation of reaction parameters, the reaction mechanism is fully characterized and correlated to the optical properties of the synthesized nanocrystals. The distinctive optical features of these doped nanocrystals are shown to be readily harnessed within thin films that are suitable for optoelectronic applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.