Parvalbumin inhibitory interneurons (PVIs) are crucial for maintaining proper excitatory/inhibitory balance and high-frequency neuronal synchronization. Their activity supports critical developmental trajectories, sensory and cognitive processing, and social behavior. Despite heterogeneity in the etiology across schizophrenia and autism spectrum disorder, PVI circuits are altered in these psychiatric disorders. Identifying mechanism(s) underlying PVI deficits is essential to establish treatments targeting in particular cognition. On the basis of published and new data, we propose oxidative stress as a common pathological mechanism leading to PVI impairment in schizophrenia and some forms of autism. A series of animal models carrying genetic and/or environmental risks relevant to diverse etiological aspects of these disorders show PVI deficits to be all accompanied by oxidative stress in the anterior cingulate cortex. Specifically, oxidative stress is negatively correlated with the integrity of PVIs and the extracellular perineuronal net enwrapping these interneurons. Oxidative stress may result from dysregulation of systems typically affected in schizophrenia, including glutamatergic, dopaminergic, immune and antioxidant signaling. As convergent end point, redox dysregulation has successfully been targeted to protect PVIs with antioxidants/redox regulators across several animal models. This opens up new perspectives for the use of antioxidant treatments to be applied to at-risk individuals, in close temporal proximity to environmental impacts known to induce oxidative stress.
In the olfactory pathway, as in the limbs, branchial arches, and heart, mesenchymal/epithelial induction, mediated by retinoic acid (RA), FGF8, sonic hedgehog (shh), and the BMPs, defines patterning, morphogenesis, and differentiation. Neuronal differentiation in the olfactory epithelium and directed growth of axons in the nascent olfactory nerve depend critically upon this inductive interaction. When RA, FGF8, shh, or BMP signaling is disrupted, distinct aspects of olfactory pathway patterning and differentiation are compromised. Thus, a cellular and molecular mechanism that facilitates musculoskeletal and vascular development elsewhere in the embryo has been adapted to guide the differentiation of the olfactory pathway in the developing forebrain.
The 22q11 deletion (or DiGeorge) syndrome (22q11DS), the result of a 1.5-to 3-megabase hemizygous deletion on human chromosome 22, results in dramatically increased susceptibility for ''diseases of cortical connectivity'' thought to arise during development, including schizophrenia and autism. We show that diminished dosage of the genes deleted in the 1.5-megabase 22q11 minimal critical deleted region in a mouse model of 22q11DS specifically compromises neurogenesis and subsequent differentiation in the cerebral cortex. Proliferation of basal, but not apical, progenitors is disrupted, and subsequently, the frequency of layer 2/3, but not layer 5/6, projection neurons is altered. This change is paralleled by aberrant distribution of parvalbuminlabeled interneurons in upper and lower cortical layers. Deletion of Tbx1 or Prodh (22q11 genes independently associated with 22q11DS phenotypes) does not similarly disrupt basal progenitors. However, expression analysis implicates additional 22q11 genes that are selectively expressed in cortical precursors. Thus, diminished 22q11 gene dosage disrupts cortical neurogenesis and interneuron migration. Such developmental disruption may alter cortical circuitry and establish vulnerability for developmental disorders, including schizophrenia and autism. psychiatric disease T he neurodevelopmental hypothesis for diseases of cortical connectivity, initially proposed for schizophrenia (1), and later extended to autism spectrum disorders (2), suggests that anomalous cortical development underlies behavioral pathology. Despite inferred relationships between suspect developmental mechanisms, neuroanatomical or functional changes in patients, and postmortem cortical pathology, to our knowledge, there are no known direct links between specific cortical developmental mechanisms and pathogenesis. The near impossibility of prospective analyses in at-risk human fetuses further complicates rigorous evaluation of the hypothesis. Thus, the hypothesis may be more effectively evaluated in animal models of genetic or environmental risk for relevant diseases. In humans, 22q11 deletion/DiGeorge syndrome (22q11DS) confers the highest known genetic risk for schizophrenia (Ϸ30%) (3, 4), increased susceptibility for autism spectrum disorders (Ϸ25%) (5), and vulnerability for additional behavioral and learning disabilities (Ͼ60%) (5). Brain imaging in 22q11DS patients shows consistent anatomical defects, including reduced cortical gray matter and polymicrogyria (6-8), and postmortem analysis indicates cellular pathology associated with developmental defects including periventricular heteropias (9). We found that diminished 22q11 gene dosage in a 22q11DS mouse model compromises specific cortical neural stem cells, basal progenitors, and alters frequency and distribution of cortical projection neurons and GABAergic interneurons. These phenotypes suggest a link between a genomic lesion, altered cortical development, and subsequent changes in cortical circuitry that likely intensify risk for behavioral diso...
SUMMARYNeural precursors in the developing olfactory epithelium (OE) give rise to three major neuronal classes -olfactory receptor (ORNs), vomeronasal (VRNs) and gonadotropin releasing hormone (GnRH) neurons. Nevertheless, the molecular and proliferative identities of these precursors are largely unknown. We characterized two precursor classes in the olfactory epithelium (OE) shortly after it becomes a distinct tissue at midgestation in the mouse: slowly dividing self-renewing precursors that express Meis1/2 at high levels, and rapidly dividing neurogenic precursors that express high levels of Sox2 and Ascl1. Precursors expressing high levels of Meis genes primarily reside in the lateral OE, whereas precursors expressing high levels of Sox2 and Ascl1 primarily reside in the medial OE. Fgf8 maintains these expression signatures and proliferative identities. Using electroporation in the wild-type embryonic OE in vitro as well as Fgf8, Sox2 and Ascl1 mutant mice in vivo, we found that Sox2 dose and Meis1 -independent of Pbx co-factors -regulate Ascl1 expression and the transition from lateral to medial precursor state. Thus, we have identified proliferative characteristics and a dose-dependent transcriptional network that define distinct OE precursors: medial precursors that are most probably transit amplifying neurogenic progenitors for ORNs, VRNs and GnRH neurons, and lateral precursors that include multi-potent self-renewing OE neural stem cells.
We assessed feeding-related developmental anomalies in the LgDel mouse model of chromosome 22q11 deletion syndrome (22q11DS), a common developmental disorder that frequently includes perinatal dysphagia – debilitating feeding, swallowing and nutrition difficulties from birth onward – within its phenotypic spectrum. LgDel pups gain significantly less weight during the first postnatal weeks, and have several signs of respiratory infections due to food aspiration. Most 22q11 genes are expressed in anlagen of craniofacial and brainstem regions critical for feeding and swallowing, and diminished expression in LgDel embryos apparently compromises development of these regions. Palate and jaw anomalies indicate divergent oro-facial morphogenesis. Altered expression and patterning of hindbrain transcriptional regulators, especially those related to retinoic acid (RA) signaling, prefigures these disruptions. Subsequently, gene expression, axon growth and sensory ganglion formation in the trigeminal (V), glossopharyngeal (IX) or vagus (X) cranial nerves (CNs) that innervate targets essential for feeding, swallowing and digestion are disrupted. Posterior CN IX and X ganglia anomalies primarily reflect diminished dosage of the 22q11DS candidate gene Tbx1. Genetic modification of RA signaling in LgDel embryos rescues the anterior CN V phenotype and returns expression levels or pattern of RA-sensitive genes to those in wild-type embryos. Thus, diminished 22q11 gene dosage, including but not limited to Tbx1, disrupts oro-facial and CN development by modifying RA-modulated anterior-posterior hindbrain differentiation. These disruptions likely contribute to dysphagia in infants and young children with 22q11DS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.