Significant improvements in video compression capability have been demonstrated with the introduction of the H.264/MPEG-4 Advanced Video Coding (AVC) standard. Since developing this standard, the Joint Video Team of the ITU-T Video Coding Experts Group (VCEG) and the ISO/IEC Moving Picture Experts Group (MPEG) has also standardized an extension of that technology that is referred to as multiview video coding (MVC). MVC provides a compact representation for multiple views of a video scene, such as multiple synchronized video cameras. Stereo-paired video for 3D viewing is an important special case of MVC. The standard enables inter-view prediction to improve compression capability, as well as supporting ordinary temporal and spatial prediction. It also supports backward compatibility with existing legacy systems by structuring the MVC bitstream to include a compatible "base view". Each other view is encoded at the same picture resolution as the base view. In recognition of its high quality encoding capability and support for backward compatibility, the Stereo High profile of the MVC extension was selected by the Blu-Ray Disc Association as the coding format for 3D video with high-definition resolution. This paper provides an overview of the algorithmic design used for extending H.264/MPEG-4 AVC towards MVC. The basic approach of MVC for enabling interview prediction and view scalability in the context of H.264/MPEG-4 AVC is reviewed. Related supplemental enhancement information (SEI) metadata is also described. Various "frame compatible" approaches for support of stereo-view video as an alternative to MVC are also discussed. A summary of the coding performance achieved by MVC for both stereo and multiview video is also provided. Future directions and challenges related to 3D video are also briefly discussed.
Proceedings of the IEEEThis work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.
The High Efficiency Video Coding (HEVC) standard has recently been extended to support efficient representation of multiview video and depth-based 3D video formats. The multiview extension, MV-HEVC, allows efficient coding of multiple camera views and associated auxiliary pictures, and can be implemented by reusing single-layer decoders without changing the block-level processing modules since block-level syntax and decoding processes remain unchanged. Bit rate savings compared with HEVC simulcast are achieved by enabling the use of interview references in motion-compensated prediction. The more advanced 3D video extension, 3D-HEVC, targets a coded representation consisting of multiple views and associated depth maps, as required for generating additional intermediate views in advanced 3D displays. Additional bit rate reduction compared with MV-HEVC is achieved by specifying new block-level video coding tools, which explicitly exploit statistical dependencies between video texture and depth and specifically adapt to the properties of depth maps. The technical concepts and features of both extensions are presented in this paper.
This paper describes extensions to the High Efficiency Video Coding (HEVC) standard that are active areas of current development in the relevant international standardization committees. While the first version of HEVC is sufficient to cover a wide range of applications, needs for enhancing the standard in several ways have been identified, including work on range extensions for color format and bit depth enhancement, embedded-bitstream scalability, and 3D video. The standardization of extensions in each of these areas will be completed in 2014, and further work is also planned. The design for these extensions represents the latest state of the art for video coding and its applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.