Integrating magnetic resonance imaging (MRI) functionality with a radiotherapy accelerator can facilitate on-line, soft-tissue based, position verification. A technical feasibility study, in collaboration with Elekta Oncology Systems and Philips Medical Systems, led to the preliminary design specifications of a MRI accelerator. Basically the design is a 6 MV accelerator rotating around a 1.5 T MRI system. Several technical issues and the clinical rational are currently under investigation. The aim of this paper is to determine the impact of the transverse 1.5 T magnetic field on the dose deposition. Monte Carlo simulations were used to calculate the dose deposition kernel in the presence of 1.5 T. This kernel in turn was used to determine the dose deposition for larger fields. Also simulations and measurements were done in the presence of 1.1 T. The pencil beam dose deposition is asymmetric. For larger fields the asymmetry persists but decreases. For the latter the distance to dose maximum is reduced by approximately 5 mm, the penumbra is increased by approximately 1 mm, and the 50% isodose line is shifted approximately 1 mm. The dose deposition in the presence of 1.5 T is affected, but the effect can be taken into account in a conventional treatment planning procedure. The impact of the altered dose deposition for clinical IMRT treatments is the topic of further research.
In this study we evaluated for a realistic head model the 3D temperature rise induced by a mobile phone. This was done numerically with the consecutive use of an FDTD model to predict the absorbed electromagnetic power distribution, and a thermal model describing bioheat transfer both by conduction and by blood flow. We calculated a maximum rise in brain temperature of 0.11 degrees C for an antenna with an average emitted power of 0.25 W, the maximum value in common mobile phones, and indefinite exposure. Maximum temperature rise is at the skin. The power distributions were characterized by a maximum averaged SAR over an arbitrarily shaped 10 g volume of approximately 1.6 W kg(-1). Although these power distributions are not in compliance with all proposed safety standards, temperature rises are far too small to have lasting effects. We verified our simulations by measuring the skin temperature rise experimentally. Our simulation method can be instrumental in further development of safety standards.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.