The Boltzmann constant k will be re-determined by using the simple, exact connection between the speed of sound in noble gases (extrapolated to zero pressure) and the thermodynamic temperature T , the molar mass of the gas M, and the universal gas constant R. The speed of sound will be determined in a spherical cavity of known volume V by measuring the acoustic resonance frequencies. This acoustic method led to the CODATA-recommended value of k; however, the CODATA value of k came from measurements using an almost perfectly spherical, stainless-steel-walled cavity filled with stagnant argon. The steel cavity's volume was determined by weighing the mercury of well-known density required to fill it. In contrast, a copper-walled, quasispherical cavity (intentionally slightly deformed from a sphere), filled with helium gas that is continuously refreshed by a small helium flow that will mitigate the effects of outgassing, will be used. The volume of the copper cavity will be determined by measuring the microwave resonance frequencies and/or by three-dimensional coordinate measurements. If the microwave method is satisfactory, the measurement of k will be based on the ratio of the speed of sound in helium-obtained by acoustic resonance measurements-to the speed of light, obtained by microwave resonance measurements. This method exploits the theorem that the frequency ratios are independent of the details of the shape of the quasi-spherical cavity. Here, progress at LNE-INM/CNAM towards a better mechanical design and better understanding of the excess of the half-widths of the acoustic and microwave measurements are reported.
A method is proposed to estimate the surface impedance of a large absorptive panel from free-field measurements with a spherical microphone array. The method relies on the reconstruction of the pressure and the particle velocity on the studied surface using an equivalent source method based on spherical array measurements. The sound field measured by the array is mainly composed of an incident and a reflected wave, so it can be represented as a spatially sparse problem. This makes it possible to use compressive sensing in order to enhance the resolution and the quality of the estimation. The results indicate an accurate reconstruction for angles of incidence between 0° and 60°, and between approximately 200 and 4000 Hz. Additionally, experimental challenges are discussed, such as the sample's finiteness at low frequencies and the estimation of the background noise.
Acoustic impedance is typically measured using an impedance tube, which requires a material sample physically fitted to the tube. However, the impedance can vary greatly between the material mounted in the tube and the material located in a real environment, where the mounting conditions are likely to be different. Also, oblique incidence cannot be measured in an impedance tube. In this paper, we investigate the use of a double-layer microphone array for in-situ measurement of surface impedance and absorption coefficient. With the array positioned near the material surface, a source emits broad-band sound towards the array and the material. A measurement is taken, and the sound pressure and the surface-normal particle velocity at the material surface are calculated using Statistically Optimized Near-field Acoustical Holography (SONAH). From the surface pressure and velocity, the impedance across a selected area is calculated, and finally the absorption coefficient is calculated from the impedance. A set of tests has been performed on porous material samples in an anechoic chamber as well as in a fitted room. Different sample sizes and different sound incidence angles have been considered. The results show consistency between the measurements in the anechoic room and the ordinary room as well as good agreement with Miki's model up to large oblique incidence angles.
One of the main components of uncertainty in high-temperature thermometry arises because of the size-of-source effect (SSE). This effect makes the temperature measurement sensitive to the geometry of the radiating environment. It is caused by optical diffraction and especially by light scattering off/from, and interreflections between, optical components inside the pyrometer. The LNE-INM/CNAM is involved in extending the thermometry temperature scale to very high temperatures (T > 2000 • C) and has developed eutectic-based fixed points (Sadli et al. (in: Zvizdic (ed.) Proceedings of TEMPMEKO 2004, 9th International Symposium on Temperature and Thermal Measurements in Industry and Science, 2004)) and a thermodynamic temperature measurement capability based on absolute radiometric methods (Briaudeau et al. (in: D. Zvizdic (ed.) Proceedings of TEMPMEKO 2004, 9thInternational Symposium on Temperature and Thermal Measurements in Industry and Science 2004)). A new measurement technique that uses an optical fiber has been developed and tested, allowing the determination of the SSE at any defocusing plane, with high resolution. A model based on optical diffraction has been developed to simulate the SSE in a real situation, considering the contribution to the pyrometer signal of the whole "3D" optical scene inside the blackbody furnace. Using the same approach, it has been demonstrated that optical scattering in a simple radiance meter can be estimated from accurate optical diffraction measurement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.