In this work, we propose a method that detects and tracks the tip of tools used in microsurgical training. This method can be used to provide valuable metrics regarding the surgeon's hand movement. It can benefit the training of surgeons, given the steep learning curve in microsurgery. Unlike past research, our tool tracking algorithm does not rely on color based measurements. Thus, it can be used in a broader domain. Also, our approach is robust to surrounding environments with non-static background, where background subtraction techniques are not suitable. Experimental results show that the proposed tool localization method has high accuracy and is statistically reliable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.