Interdisciplinary studies on cultural heritage artworks provide efficient solutions to control fungal growth and the negative effects of biodeterioration. In this study, we aimed to identify the population of filamentous fungi colonizing an engraving by the Dutch painter Rembrandt, whose conservation status was compromised and showed visible stains of biodeterioration. Microbiological techniques, such as cultivation‐dependent approaches and molecular biology, have been used to identify fungal populations. In addition, the anaerobic atmosphere technique and eco‐friendly antifungal agents, such as essential oils (EOs) of Curcuma longa, Thymus vulgaris, and Melaleuca alternifolia, were tested against the metabolically active fungal population Cladoposporium spinulosum. Furthermore, in vitro assays revealed that the interaction between the fungal strains and EO was positive, inhibiting the growth of these fungi, and the EOs from T. vulgaris and M. alternifolia showed low minimum inhibitory concentration values. Exposure to anaerobic conditions for 35 days was effective in the total elimination of isolated fungal strains. In conclusion, this study demonstrated the effectiveness of a nondestructive technique for artwork on engraving colonized by fungal strains and using EO as an alternative to toxic antifungals used in conventional treatments in artworks. Thus, this interdisciplinary study involving applied microbiology and botanical and preventive conservation presents a tool to control microbial growth while maintaining artwork integrity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.