Future biorefineries will integrate biomass conversion processes to produce fuels, power, heat and value-added chemicals. Due to its low price and wide distribution, lignocellulosic biomass is expected to play an important role toward this goal. Regarding renewable biofuel production, bioethanol from lignocellulosic feedstocks is considered the most feasible option for fossil fuels replacement since these raw materials do not compete with food or feed crops. In the overall process, lignin, the natural barrier of the lignocellulosic biomass, represents an important limiting factor in biomass digestibility. In order to reduce the recalcitrant structure of lignocellulose, biological pretreatments have been promoted as sustainable and environmentally friendly alternatives to traditional physico-chemical technologies, which are expensive and pollute the environment. These approaches include the use of diverse white-rot fungi and/or ligninolytic enzymes, which disrupt lignin polymers and facilitate the bioconversion of the sugar fraction into ethanol. As there is still no suitable biological pretreatment technology ready to scale up in an industrial context, white-rot fungi and/or ligninolytic enzymes have also been proposed to overcome, in a separated or in situ biodetoxification step, the effect of the inhibitors produced by non-biological pretreatments. The present work reviews the latest studies regarding the application of different microorganisms or enzymes as useful and environmentally friendly delignification and detoxification technologies for lignocellulosic biofuel production. This review also points out the main challenges and possible ways to make these technologies a reality for the bioethanol industry.
Abstract:The continuous increase in the world energy and chemicals demand requires the development of sustainable alternatives to non-renewable sources of energy. Biomass facilities and biorefineries represent interesting options to gradually replace the present industry based on fossil fuels. Lignocellulose is the most promising feedstock to be used in biorefineries. From a sugar platform perspective, a wide range of fuels and chemicals can be obtained via microbial fermentation processes, being ethanol the most significant lignocellulose-derived fuel. Before fermentation, lignocellulose must be pretreated to overcome its inherent recalcitrant structure and obtain the fermentable sugars. Usually, harsh conditions are required for pretreatment of lignocellulose, producing biomass degradation and releasing different compounds that are inhibitors of the hydrolytic enzymes and fermenting microorganisms. Moreover, the lignin polymer that remains in pretreated materials also affects biomass conversion by limiting the enzymatic hydrolysis. The use of laccases has been considered as a very powerful tool for delignification and detoxification of pretreated lignocellulosic materials, boosting subsequent saccharification and fermentation processes. This review compiles the latest studies about the application of laccases as useful and environmentally friendly delignification and detoxification technology, highlighting the main challenges and possible ways to make possible the integration of these enzymes in future lignocellulose-based industries.
Nowadays, the transport sector is one of the main sources of greenhouse gas (GHG) emissions and air pollution in cities. The use of renewable energies is therefore imperative to improve the environmental sustainability of this sector. In this regard, biofuels play an important role as they can be blended directly with fossil fuels and used in traditional vehicles’ engines. Bioethanol is the most used biofuel worldwide and can replace gasoline or form different gasoline-ethanol blends. Additionally, it is an important building block to obtain different high added-value compounds (e.g., acetaldehyde, ethylene, 1,3-butadiene, ethyl acetate). Today, bioethanol is mainly produced from food crops (first-generation (1G) biofuels), and a transition to the production of the so-called advanced ethanol (obtained from lignocellulosic feedstocks, non-food crops, or industrial waste and residue streams) is needed to meet sustainability criteria and to have a better GHG balance. This work gives an overview of the current production, use, and regulation rules of bioethanol as a fuel, as well as the advanced processes and the co-products that can be produced together with bioethanol in a biorefinery context. Special attention is given to the opportunities for making a sustainable transition from bioethanol 1G to advanced bioethanol.
The application of enzymes offers an enormous potential in the improvement of existing industrial procedures and in the establishment of new processes for obtaining high-added value products. Enzymes provide cleaner and more efficient industrial processes and contribute to the sustainability concept. In this sense, laccases are very versatile biocatalysts currently used in food, textile and pulp and paper sectors among others. During the last years, scientific efforts have been diverted to the exploitation of such interesting enzymes in novel fields like lignocellulosic biorefineries, biosensors or enzymatic biofuel cells. This review provides a general vision of the use of laccase enzymes describing their main characteristics and mode of action. Furthermore, their current uses in industrial processes are summarized and the most novel potential application of laccases are revealed. The increasing interest on laccases is also demonstrated by the research efforts on enzyme engineering as it is detailed in this review. wileyonlinelibrary.com/jctb www.soci.org AD Moreno et al. J Chem Technol Biotechnol 2020; 95: 481-494
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.