Vascular phantoms mimicking human vessels are commonly used to perform in vitro hemodynamic studies for a number of bioengineering applications, such as medical device testing, clinical simulators, and medical imaging research. Simplified geometries are useful to perform parametric studies, but accurate representations of the complexity of the in vivo system are essential in several applications as personalized features have been found to play a crucial role in the management and treatment of many vascular pathologies. Despite numerous studies employing vascular phantoms produced through different manufacturing techniques, an economically viable technique, able to generate large complex patient-specific vascular anatomies, accessible to nonspecialist laboratories, still needs to be identified. In this work, a manufacturing framework to create personalized and complex phantoms with easily accessible and affordable materials and equipment is presented. In particular, three-dimensional (3D) printing with polyvinyl alcohol (PVA) is employed to create the mold, and lost core casting is performed to create the physical model. The applicability and flexibility of the proposed fabrication protocol is demonstrated through three phantom case studies—an idealized aortic arch, a patient-specific aortic arch, and a patient-specific aortic dissection model. The phantoms were successfully manufactured in a rigid silicone, a compliant silicone, and a rigid epoxy resin, respectively; using two different 3D printers and two casting techniques, without the need of specialist equipment.
Validation of computational models using in vitro phantoms is a nontrivial task, especially in the replication of the mechanical properties of the vessel walls, which varies with age and pathophysiological state. In this paper, we present a novel aortic phantom reconstructed from patient-specific data with variable wall compliance that can be tuned without recreating the phantom. The three-dimensional (3D) geometry of an aortic arch was retrieved from a computed tomography angiography scan. A rubber-like silicone phantom was manufactured and connected to a compliance chamber in order to tune its compliance. A lumped resistance was also coupled with the system. The compliance of the aortic arch model was validated using the Young's modulus and characterized further with respect to clinically relevant indicators. The silicone model demonstrates that compliance can be finely tuned with this system under pulsatile flow conditions. The phantom replicated values of compliance in the physiological range. Both, the pressure curves and the asymmetrical behavior of the expansion, are in agreement with the literature. This novel design approach allows obtaining for the first time a phantom with tunable compliance. Vascular phantoms designed and developed with the methodology proposed in this paper have high potential to be used in diverse conditions. Applications include training of physicians, pre-operative trials for complex interventions, testing of medical devices for cardiovascular diseases (CVDs), and comparative Magnetic-resonance-imaging (MRI)-based computational studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.