Extracts from 44 species of seaweed from Gran Canaria (Canary Islands, Spain) were screened for the production of antibacterial and antifungal compounds against a panel of Gram-negative and Grampositive bacteria, mycobacteria, yeasts and fungi. A total of 28 species displayed antibacterial activity, of which six also showed antifungal activity. Asparagopsis taxiformis and Cymopolia barbata were the species with the strongest activities against the broadest spectrum of target microorganisms. All the species with antibacterial activity were active against Gram-positive bacteria, whereas only two species, A. taxiformis and Osmundea hybrida, were active against mycobacteria. The production of secondary metabolites with antimicrobial activities by the macroalgae was also studied under dierent conditions, although no common trend for bioactivity was observed.
As a part of a screening programme developed to evaluate the antimicrobial activity of basidiomycetes, 317 isolates representing 204 species collected in Spain were screened against a range of human clinical pathogens and laboratory controls. Extracts from 45% of the isolates, representing 109 species, showed antimicrobial activity. Antibacterial activity was more pronounced than antifungal activity. The proportion of extracts from basidiomycetes showing antimicrobial activity was similar to or above that obtained for representative orders of Ascomycetes, such as Pezizales and Xylariales, but lower than that produced by members of the orders Diaporthales, Eurotiales, Hypocreales, Leotiales and Sordariales. Suprageneric taxa (orders and families) did not show pronounced differences in their antimicrobial activities though such differences were observed at the genus level, suggesting that the ability to produce these bioactive compounds is not homogenously distributed amongst the basidiomycetes. Isolates from some species showed large differences in their ability to produce metabolites with antimicrobial activity, possibly reflecting genetic differences at the infraspecific level.
Evaluation of fungal fermentation extracts with whole cell Candida albicans activity resulted in the identification of a novel class of isoxazolidinone-containing metabolites named parnafungins. Chemical-genetic profiling with the C. albicans fitness test identified the biochemical target as inhibition of polyadenosine polymerase, a component of the mRNA cleavage and polyadenylation complex. Parnafungins were discovered from fermentation extracts of fungi resembling F. larvarum isolated from plants, plant litter and lichens. Furthermore authentic strains of F. larvarum var. larvarum and F. larvarum var. rubrum could be induced to produce parnafungins and their degradation products in low titers. Relationships among strains of the F. larvarum complex (FLC), including parnafungin-producing strains, were examined by cladistic analyses of rDNA, mitochondrial rDNA, and two protein-coding genes, comparisons of antifungal activity and antifungal metabolite profiles, and morphological phenotypes. Integrated analyses of these data led to the conclusion that the diversity within the FLC exceeded the one-to-one correspondence between F. larvarum and its teleomorph Cosmospora aurantiicola. Based on multiple gene sequence analyses, strains of the FLC formed a monophyletic clade inclusive of the parnafungin-producing strains. The FLC, including newly discovered parnafungin-producing strains, could be resolved into at least six different lineages, possibly representing cryptic' species, of which one was not fully resolved from F. larvarum var. rubrum. Fusarium larvarum var. rubrum represents a species distinct from var. larvarum. Finally we report that two other species from the Hypocreales, Trichonectria rectipila and Cladobotryum pinarense, are able to produce parnafungins and their open-ring forms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.