Unmanned aerial vehicles (UAVs) are now considered one of the best remote sensing techniques for gathering data over large areas. They are now being used in the industry sector as sensing tools for proactively solving or preventing many issues, besides quantifying production and helping to make decisions. UAVs are a highly consistent technological platform for efficient and cost-effective data collection and event monitoring. The industrial Internet of things (IIoT) sends data from systems that monitor and control the physical world to data processing systems that cloud computing has shown to be important tools for meeting processing requirements. In fog computing, the IoT gateway links different objects to the internet. It can operate as a joint interface for different networks and support different communication protocols. A great deal of effort has been put into developing UAVs and multi-UAV systems. This paper introduces a smart IIoT monitoring and control system based on an unmanned aerial vehicle that uses cloud computing services and exploits fog computing as the bridge between IIoT layers. Its novelty lies in the fact that the UAV is automatically integrated into an industrial control system through an IoT gateway platform, while UAV photos are systematically and instantly computed and analyzed in the cloud. Visual supervision of the plant by drones and cloud services is integrated in real-time into the control loop of the industrial control system. As a proof of concept, the platform was used in a case study in an industrial concrete plant. The results obtained clearly illustrate the feasibility of the proposed platform in providing a reliable and efficient system for UAV remote control to improve product quality and reduce waste. For this, we studied the communication latency between the different IIoT layers in different IoT gateways.
Unmanned aerial vehicles (UAVs) are becoming integrated into a wide range of modern IoT applications. The growing number of networked IoT devices generates a large amount of data. However, processing and memorizing this massive volume of data at local nodes have been deemed critical challenges, especially when using artificial intelligence (AI) systems to extract and exploit valuable information. In this context, mobile edge computing (MEC) has emerged as a way to bring cloud computing (CC) processes within reach of users, to address computation-intensive offloading and latency issues. This paper provides a comprehensive review of the most relevant research works related to UAV technology applications in terms of enabled or assisted MEC architectures. It details the utility of UAV-enabled MEC architecture regarding emerging IoT applications and the role of both deep learning (DL) and machine learning (ML) in meeting various limitations related to latency, task offloading, energy demand, and security. Furthermore, throughout this article, the reader gains an insight into the future of UAV-enabled MEC, the advantages and the critical challenges to be tackled when using AI.
Apart from their ecological value, the world’s oceans are among the planet’s most valuable resources, a rich source of food and wealth and in urgent need of protection. This article describes BUSCAMOS-RobObs, a robot-based observatory, consisting of an autonomous solar-powered marine robot with specialized sensing systems designed to carry out long-term observation missions in the inland sea of the Mar Menor in southeastern Spain. This highly specialised device is unique because it has the capacity to anchor itself to the seabed and become a “buoy”, either to take measurements at specific points or to recharge its batteries. It thus avoids drifting and possible accidents in the buoy mode, especially near the coast, and resumes monitoring tasks when the required energy levels are reached. The robot is equipped with a broad range of sensors, including side scan sonar, sub-bottom sonar, laser systems, ultrasound sonar, depth meters, a multi-parametric probe and a GPS, which can collect georeferenced oceanic data. Although various types of autonomous vehicles have been described in the literature, they all have limited autonomy (even in the long term) as regards operational time and covering the seabed. The article describes a permanent monitoring mission in the Mar Menor, with a combination of solar energy and a decision-making strategy as regards the optimum route to be followed. The energy and mission simulation results, as well as an account of actual monitoring missions are also included.
Autonomous underwater vehicles (AUVs) have increasingly played a key role in monitoring the marine environment, studying its physical-chemical parameters for the supervision of endangered species. AUVs now include a power source and an intelligent control system that allows them to autonomously carry out programmed tasks. Their navigation system is much more challenging than that of land-based applications, due to the lack of connected networks in the marine environment. On the other hand, due to the latest developments in neural networks, particularly deep learning (DL), the visual recognition systems can achieve impressive performance. Computer vision (CV) has especially improved the field of object detection. Although all the developed DL algorithms can be deployed in the cloud, the present cloud computing system is unable to manage and analyze the massive amount of computing power and data. Edge intelligence is expected to replace DL computation in the cloud, providing various distributed, low-latency and reliable intelligent services. This paper proposes an AUV model system designed to overcome latency challenges in the supervision and tracking process by using edge computing in an IoT gateway. The IoT gateway is used to connect the AUV control system to the internet. The proposed model successfully carried out a long-term monitoring mission in a predefined area of shallow water in the Mar Menor (Spain) to track the underwater Pinna nobilis (fan mussel) species. The obtained results clearly justify the proposed system’s design and highlight the cloud and edge architecture performances. They also indicate the need for a hybrid cloud/edge architecture to ensure a real-time control loop for better latency and accuracy to meet the system’s requirements.
In this paper, an intelligent navigation system for an unmanned underwater vehicle powered by renewable energy and designed for shadow water inspection in missions of a long duration is proposed. The system is composed of an underwater vehicle, which tows a surface vehicle. The surface vehicle is a small boat with photovoltaic panels, a methanol fuel cell and communication equipment, which provides energy and communication to the underwater vehicle. The underwater vehicle has sensors to monitor the underwater environment such as sidescan sonar and a video camera in a flexible configuration and sensors to measure the physical and chemical parameters of water quality on predefined paths for long distances. The underwater vehicle implements a biologically inspired neural architecture for autonomous intelligent navigation. Navigation is carried out by integrating a kinematic adaptive neuro-controller for trajectory tracking and an obstacle avoidance adaptive neuro-controller. The autonomous underwater vehicle is capable of operating during long periods of observation and monitoring. This autonomous vehicle is a good tool for observing large areas of sea, since it operates for long periods of time due to the contribution of renewable energy. It correlates all sensor data for time and geodetic position. This vehicle has been used for monitoring the Mar Menor lagoon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.