Unmanned aerial vehicles (UAVs) are now considered one of the best remote sensing techniques for gathering data over large areas. They are now being used in the industry sector as sensing tools for proactively solving or preventing many issues, besides quantifying production and helping to make decisions. UAVs are a highly consistent technological platform for efficient and cost-effective data collection and event monitoring. The industrial Internet of things (IIoT) sends data from systems that monitor and control the physical world to data processing systems that cloud computing has shown to be important tools for meeting processing requirements. In fog computing, the IoT gateway links different objects to the internet. It can operate as a joint interface for different networks and support different communication protocols. A great deal of effort has been put into developing UAVs and multi-UAV systems. This paper introduces a smart IIoT monitoring and control system based on an unmanned aerial vehicle that uses cloud computing services and exploits fog computing as the bridge between IIoT layers. Its novelty lies in the fact that the UAV is automatically integrated into an industrial control system through an IoT gateway platform, while UAV photos are systematically and instantly computed and analyzed in the cloud. Visual supervision of the plant by drones and cloud services is integrated in real-time into the control loop of the industrial control system. As a proof of concept, the platform was used in a case study in an industrial concrete plant. The results obtained clearly illustrate the feasibility of the proposed platform in providing a reliable and efficient system for UAV remote control to improve product quality and reduce waste. For this, we studied the communication latency between the different IIoT layers in different IoT gateways.
Unmanned aerial vehicles (UAVs) are becoming integrated into a wide range of modern IoT applications. The growing number of networked IoT devices generates a large amount of data. However, processing and memorizing this massive volume of data at local nodes have been deemed critical challenges, especially when using artificial intelligence (AI) systems to extract and exploit valuable information. In this context, mobile edge computing (MEC) has emerged as a way to bring cloud computing (CC) processes within reach of users, to address computation-intensive offloading and latency issues. This paper provides a comprehensive review of the most relevant research works related to UAV technology applications in terms of enabled or assisted MEC architectures. It details the utility of UAV-enabled MEC architecture regarding emerging IoT applications and the role of both deep learning (DL) and machine learning (ML) in meeting various limitations related to latency, task offloading, energy demand, and security. Furthermore, throughout this article, the reader gains an insight into the future of UAV-enabled MEC, the advantages and the critical challenges to be tackled when using AI.
Quality control is one of the industrial tasks most susceptible to be improved by implementing technological innovations. As an innovative technology, machine vision enables reliable and fast 24/7 inspections and helps producers to improve the efficiency of manufacturing operations. The accessible data by vision equipment will be used to identify and report defective products, understand the causes of deficiencies and allow rapid and efficient intervention in smart factories. From this perspective, the proposed machine vision model in this paper combines the identification of defective products and the continuous improvement of manufacturing processes by predicting the most suitable parameters of production processes to obtain a defect-free item. The suggested model exploits all generated data by various integrated technologies in the manufacturing chain, thus meeting the requirements of quality management in the context of Industry 4.0, based on predictive analysis to identify patterns in data and suggest corrective actions to ensure product quality. In addition, a comparative study between several machine learning algorithms, both for product classification and process improvement models, is performed in order to evaluate the designed system. The results of this study show that the proposed model largely meets the requirements for the proper implementation of these techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.