Large quantities of microscopic red, green, and blue light-emitting diodes (LEDs) made of crystalline inorganic semiconductor materials micro-transfer printed in large quantities onto rigid or flexible substrates form monochrome and color displays having a wide range of sizes and interesting properties. Transfer-printed micro-LED displays promise excellent environmental robustness, brightness, spatial resolution, and efficiency. Passive-matrix and active-matrix inorganic LED displays were constructed, operated, and their attributes measured. Tests demonstrate that inorganic micro-LED displays have outstanding color, viewing angle, and transparency. Yield improvement techniques include redundancy, physical repair, and electronic correction. Micro-transfer printing enables revolutionary manufacturing strategies in which microscale LEDs are first assembled into miniaturized micro-system "light engines," and then micro-transfer printed and interconnected directly to metallized large-format panels. This paper reviews micro-transfer printing technology for micro-LED displays. FIGURE 3 -(A) Schematic illustration of a micro-transfer stamp that is rigid in horizontal directions and compliant in the vertical dimension. (B) Photograph of a stamp on a 225 × 225 mm glass back. (C) SEM of the stamp posts.FIGURE 4 -Photograph of a 50 × 50 mm stamp silicon master (A) and elastomer stamp (B). The stamp has an array of 250 by 250 posts on a 200-micron pitch with 62,500 posts. Journal of the SID 25/10, 2017 591 FIGURE 9 -Micrographs of an array of microscopic inorganic light-emitting diodes microtransfer printed to a metal-coated substrate (left) and emitting red light (right). The anodes are connected in common with a transparent aluminum zinc oxide anode.
Silicon photonics (SiPh) enables compact photonic integrated circuits (PICs), showing superior performance for a wide variety of applications. Various optical functions have been demonstrated on this platform that allows for complex and powerful PICs. Nevertheless, laser source integration technologies are not yet as mature, hampering the further cost reduction of the eventual Si photonic systems-on-chip and impeding the expansion of this platform to a broader range of applications. Here, we discuss a promising technology, micro-transfer-printing (μTP), for the realization of III-V-on-Si PICs. By employing a polydimethylsiloxane elastomeric stamp, the integration of III-V devices can be realized in a massively parallel manner on a wafer without substantial modifications to the SiPh process flow, leading to a significant cost reduction of the resulting III-V-on-Si PICs. This paper summarizes some of the recent developments in the use of μTP technology for realizing the integration of III-V photodiodes and lasers on Si PICs.
An electrically pumped DFB laser integrated on and coupled to a silicon waveguide circuit is demonstrated by transfer printing a 40 × 970 μm III-V coupon, defined on a III-V epitaxial wafer. A second-order grating defined in the silicon device layer with a period of 477 nm and a duty cycle of 75% was used for realizing single mode emission, while an adiabatic taper structure is used for coupling to the silicon waveguide layer. 18 mA threshold current and a maximum single-sided waveguide-coupled output power above 2 mW is obtained at 20°C. Single mode operation around 1550 nm with > 40 dB side mode suppression ratio (SMSR) is realized. This new integration approach allows for the very efficient use of the III-V material and the massively parallel integration of these coupons on a silicon photonic integrated circuit wafer. It also allows for the intimate integration of III-V opto-electronic components based on different epitaxial layer structures.
The transfer printing of 2 μm-thick aluminum indium gallium nitride (AlInGaN) micron-size light-emitting diodes with 150 nm (±14 nm) minimum spacing is reported. The thin AlInGaN structures were assembled onto mechanically flexible polyethyleneterephthalate/polydimethylsiloxane substrates in a representative 16 × 16 array format using a modified dip-pen nano-patterning system. Devices in the array were positioned using a pre-calculated set of coordinates to demonstrate an automated transfer printing process. Individual printed array elements showed blue emission centered at 486 nm with a forward-directed optical output power up to 80 μW (355 mW/cm2) when operated at a current density of 20 A/cm2
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.