The first room-temperature terahertz (THz)-frequency nanodetector exploiting a 10 nm thick flake of exfoliated crystalline black phosphorus as an active channel of a field-effect transistor, is devised. By engineering and embedding planar THz antennas for efficient light harvesting, the first technological demonstration of a phosphorus-based active THz device is described.
Thermoplasmonic effects notably improve the efficiency of vacuum membrane distillation, an economically sustainable tool for high-quality seawater desalination. Poly(vinylidene fluoride) (PVDF) membranes filled with spherical silver nanoparticles are used, whose size is tuned for the aim. With the addition of plasmonic nanoparticles in the membrane, the transmembrane flux increases by 11 times, and, moreover, the temperature at the membrane interface is higher than bulk temperature.
The ability to convert light into an electrical signal with high efficiencies and controllable dynamics, is a major need in photonics and optoelectronics. In the Terahertz (THz) frequency range, with its exceptional application possibilities in high data rate wireless communications, security, night-vision, biomedical or video-imaging and gas sensing, detection technologies providing efficiency and sensitivity performances that can be “engineered” from scratch, remain elusive. Here, by exploiting the inherent electrical and thermal in-plane anisotropy of a flexible thin flake of black-phosphorus (BP), we devise plasma-wave, thermoelectric and bolometric nano-detectors with a selective, switchable and controllable operating mechanism. All devices operates at room-temperature and are integrated on-chip with planar nanoantennas, which provide remarkable efficiencies through light-harvesting in the strongly sub-wavelength device channel. The achieved selective detection (∼5–8 V/W responsivity) and sensitivity performances (signal-to-noise ratio of 500), are here exploited to demonstrate the first concrete application of a phosphorus-based active THz device, for pharmaceutical and quality control imaging of macroscopic samples, in real-time and in a realistic setting.
Plasmons in graphene have unusual properties and offer promising prospects for plasmonic applications covering a wide frequency range, ranging from terahertz up to the visible. Plasmon modes have been recently studied in both free-standing and supported graphene. Here, we review plasmons in graphene with particular emphasis on plasmonic excitations in epitaxial graphene and on the influence of the underlying substrate on the screening processes. Although the theoretical comprehension of plasmons in supported graphene is still incomplete, several experimental results provide clues regarding the nature of plasmonic excitations in graphene on metals and semiconductors. Plasmon in graphene can be tuned by chemical doping and gating potentials. We show through selected examples that the adsorbates can be used to tune the plasmon frequency, while the intercalation of chemical species allows the decoupling of the graphene sheet from the substrate to recover the plasmon dispersion of pristine graphene. Finally, we also report intriguing effects due to many-body interaction, such as the excitations generated by electron-electron coupling (magnetoplasmons) and the composite modes arising from the coupling of plasmons with phonons and with charge carriers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.