Representing a triangulated two manifold using a single triangle strip is an NP-complete problem. By introducing a few Steiner vertices, recent works find such a single-strip and hence a linear ordering of edge-connected triangles of the entire triangulation. In this paper, we highlight and exploit this linear order in efficient triangle-strip management for high-performance rendering. We present new algorithms to generate weighted single-strip representations that respect different constraint-based clustering of triangles. These functional constraints can be application dependent; for example, normal-based constraints for efficient visibility culling or spatial constraints for highly coherent vertex-caching. We also present a hierarchical single-strip-management strategy for highperformance interactive 3D rendering. ABSTRACTRepresenting a triangulated two manifold using a single triangle strip is an NP-complete problem. By introducing a few Steiner vertices, recent works find such a single-strip and hence a linear ordering of edge-connected triangles of the entire triangulation. In this paper, we highlight and exploit this linear order in efficient triangle-strip management for high-performance rendering. We present new algorithms to generate weighted single-strip representations that respect different constraint-based clustering of triangles. These functional constraints can be application dependent; for example, normal-based constraints for efficient visibility culling or spatial constraints for highly coherent vertex-caching. We also present a hierarchical single-strip-management strategy for highperformance interactive 3D rendering.
Representing a triangulated two manifold using a single triangle strip is an NP-complete problem. By introducing a few Steiner vertices, recent works find such a single-strip, and hence a linear ordering of edge-connected triangles of the entire triangulation. In this paper, we extend previous results [10] that exploit this linear ordering in efficient triangle-strip management for high-performance rendering. We present new algorithms to generate single-strip representations that follow different user defined constraints or preferences in the form of edge weights. These functional constraints are application dependent; For example, normalbased constraints can be used for efficient rendering after visibility culling, or spatial constraints for highly coherent vertex-caching. We highlight the flexibility of this approach by generating single-strips with preferences as arbitrary as the orientation of the edges. We also present a hierarchical single-strip management strategy for high-performance interactive 3D rendering.
In this paper, we propose a method for obtaining a textured billboards representation of a static scene, given a sequence of calibrated video images. Each billboard is a textured and partially transparent plane into which the input images are mapped using perspective projection. Binning using Hough transform is used to find the position of the billboards, and optic flow measures are used to determine their textures. Since these billboards are correct only from specific view-points, view-dependent rendering is used to choose and display appropriate billboards to reproduce the input.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.