We report the synthesis of high-quality single crystals of ReS2 and ReSe2 transition metal dichalcogenides using a modified Bridgman method that avoids the use of a halogen transport agent. Comprehensive structural characterization using X-ray diffraction and electron microscopy confirm a distorted triclinic 1T′ structure for both crystals and reveal a lack of Bernal stacking in ReS2. Photoluminescence (PL) measurements on ReS2 show a layer-independent bandgap of 1.51 eV, with increased PL intensity from thicker flakes, confirming interlayer coupling to be negligible in this material. For ReSe2, the bandgap is weakly layer-dependent and decreases from 1.31 eV for thin layers to 1.29 eV in thick flakes. Both chalcogenides show feature-rich Raman spectra whose excitation energy dependence was studied. The lower background doping inherent to our crystal growth process results in high field-effect mobility values of 79 and 0.8 cm2/(V s) for ReS2 and ReSe2, respectively, as extracted from FET structures fabricated from exfoliated flakes. Our work shows ReX2 chalcogenides to be promising 2D materials candidates, especially for optoelectronic devices, without the requirement of having monolayer thin flakes to achieve a direct bandgap.
Two-dimensional semiconductors, including transition metal dichalcogenides, are of interest in electronics and photonics but remain nonmagnetic in their intrinsic form. Previous efforts to form two-dimensional dilute magnetic semiconductors utilized extrinsic doping techniques or bulk crystal growth, detrimentally affecting uniformity, scalability, or Curie temperature. Here, we demonstrate an in situ substitutional doping of Fe atoms into MoS 2 monolayers in the chemical vapor deposition growth. The iron atoms substitute molybdenum sites in MoS 2 crystals, as confirmed by transmission electron microscopy and Raman signatures. We uncover an Fe-related spectral transition of Fe:MoS 2 monolayers that appears at 2.28 eV above the pristine bandgap and displays pronounced ferromagnetic hysteresis. The microscopic origin is further corroborated by density functional theory calculations of dipoleallowed transitions in Fe:MoS 2. Using spatially integrating magnetization measurements and spatially resolving nitrogen-vacancy center magnetometry, we show that Fe:MoS 2 monolayers remain magnetized even at ambient conditions, manifesting ferromagnetism at room temperature.
Crystalline two-dimensional (2D) superconductors (SCs) with low carrier density are an exciting new class of materials in which electrostatic gating can tune superconductivity, electronic interactions play a prominent role, and electrical transport properties may directly reflect the topology of the Fermi surface. Here, we report the dramatic enhancement of superconductivity with decreasing thickness in semimetallic T d-MoTe2, with critical temperature (T c) increasing up to 7.6 K for monolayers, a 60-fold increase with respect to the bulk T c. We show that monolayers possess a similar electronic structure and density of states (DOS) as the bulk, implying that electronic interactions play a strong role in the enhanced superconductivity. Reflecting the low carrier density, the critical temperature, magnetic field, and current density are all tunable by an applied gate voltage. The response to high in-plane magnetic fields is distinct from that of other 2D SCs and reflects the canted spin texture of the electron pockets.
Highly doped graphene holds promise for next-generation electronic and photonic devices.However, chemical doping cannot be precisely controlled, and introduces external disorder that significantly diminishes the carrier mobility and therefore the graphene conductivity. Here, we show that monolayer tungsten oxyselenide (TOS) created by oxidation of WSe2 acts as an efficient and low-disorder hole-dopant for graphene. When the TOS is directly in contact with graphene, the induced hole density is 3 × 10 13 cm -2 , and the room-temperature mobility is 2,000 cm 2 /V•s, far exceeding that of chemically-doped graphene. Inserting WSe2 layers between the TOS and graphene tunes the induced hole density as well as reduces charge disorder such that the mobility exceeds 20,000 cm 2 /V•s and reaches the limit set by acoustic phonon scattering, resulting in sheet resistance below 50 /□. An electrostatic model based on work-function mismatch accurately describes the tuning of the carrier density with WSe2 interlayer thickness. These films show unparalleled performance as transparent conductors at telecommunication wavelengths, as shown by measurements of transmittance in thin films and insertion loss in photonic ring resonators. This work opens up new avenues in optoelectronics incorporating two-dimensional heterostructures including infrared transparent conductors, electro-phase modulators, and various junction devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.