Cancer is a wide category of diseases that is caused by the abnormal, uncontrollable growth of cells, and it is the second leading cause of death globally. Screening, early diagnosis, and prediction of recurrence give patients the best possible chance for successful treatment. However, these tests can be expensive and invasive and the results have to be interpreted by experts. Genetic algorithms (GAs) are metaheuristics that belong to the class of evolutionary algorithms. GAs can find the optimal or near-optimal solutions in huge, difficult search spaces and are widely used for search and optimization. This makes them ideal for detecting cancer by creating models to interpret the results of tests, especially noninvasive. In this article, we have comprehensively reviewed the existing literature, analyzed them critically, provided a comparative analysis of the state-of-the-art techniques, and identified the future challenges in the development of such techniques by medical professionals.
Deep generative models, such as deep Boltzmann machines, focused on models that provided parametric specification of probability distribution functions. Such models are trained by maximizing intractable likelihood functions, and therefore require numerous approximations to the likelihood gradient. This underlying difficulty led to the development of generative machines such as generative stochastic networks, which do not represent the likelihood functions explicitly, like the earlier models, but are trained with exact backpropagation rather than the numerous approximations. These models use piecewise linear units that are having well behaved gradients. Generative machines were further extended with the introduction of an associative adversarial network leading to the generative adversarial nets (GANs) model by Goodfellow in 2014. The estimations in GANs process two multilayer perceptrons, called the generative model and the discriminative model. These are learned jointly by alternating the training of the two models, using game theory principles. However, GAN has many difficulties, including: the difficulty of training the models; criticality in the selection of hyper-parameters; difficulty in the control of generated samples; balancing the convergence of the discriminator and generator; and the problem of modal collapse. Since its inception, efforts have been made to tackle these issues one at a time or in multiples at several stages by many researchers. However, most of these have been handled efficiently in the boundary equilibrium generative adversarial networks (BEGAN) model introduced by Berthelot et al. in 2017. In this work we presented the advent of adversarial networks, starting with the history behind the models and c developments done on GANs until the BEGAN model was introduced. Since some time has elapsed since the proposal of BEGAN, we provided an up-to-date study, as well as future directions for various aspects of adversarial learning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.