Breast cancer is one of the most widespread diseases in women worldwide. It leads to the second-largest mortality rate in women, especially in European countries. It occurs when malignant lumps that are cancerous start to grow in the breast cells. Accurate and early diagnosis can help in increasing survival rates against this disease. A computer-aided detection (CAD) system is necessary for radiologists to differentiate between normal and abnormal cell growth. This research consists of two parts; the first part involves a brief overview of the different image modalities, using a wide range of research databases to source information such as ultrasound, histography, and mammography to access various publications. The second part evaluates different machine learning techniques used to estimate breast cancer recurrence rates. The first step is to perform preprocessing, including eliminating missing values, data noise, and transformation. The dataset is divided as follows: 60% of the dataset is used for training, and the rest, 40%, is used for testing. We focus on minimizing type one false-positive rate (FPR) and type two false-negative rate (FNR) errors to improve accuracy and sensitivity. Our proposed model uses machine learning techniques such as support vector machine (SVM), logistic regression (LR), and K-nearest neighbor (KNN) to achieve better accuracy in breast cancer classification. Furthermore, we attain the highest accuracy of 97.7% with 0.01 FPR, 0.03 FNR, and an area under the ROC curve (AUC) score of 0.99. The results show that our proposed model successfully classifies breast tumors while overcoming previous research limitations. Finally, we summarize the paper with the future trends and challenges of the classification and segmentation in breast cancer detection.
Depression is a common illness worldwide with doubtless severe implications. Due to the absence of early identification and treatment for depression, millions of individuals worldwide suffer from mental illnesses. It might be difficult to identify those who are experiencing mental health illnesses and to provide them with the early help that they need. Additionally, depression may be associated with thoughts of suicide. Currently, there are no clinically specific diagnostic biomarkers that can identify the severity and type of depression. In this research paper, the novel particle swarm-cuckoo search (PS-CS) optimization algorithm is proposed instead of the traditional backpropagation algorithm for training deep neural networks. The backpropagation algorithm is widely used for supervised learning in deep neural networks, but it has limitations in terms of convergence speed and the possibility of getting trapped in local optima. These problems were addressed by using a deep neural network architecture for depression detection tasks along with the PS-CS optimization technique. The PS-CS algorithm combines the strengths of both particle swarm optimization and cuckoo search algorithms, which allows for a more efficient and effective optimization of the network parameters. We also evaluated how well the suggested methods performed against the most widely used classification models, including (K-nearest neighbor) KNN, (support vector regression) SVR, and decision trees, as well as the most widely used deep learning models, including residual neural network (ResNet), visual geometry group (VGG), and simple neural network (LeNet). The findings show that the suggested method, PS-CS, in conjunction with the CNN model, outperformed all other models, achieving the maximum accuracy of 99.5%. Other models, such as the KNN, decision trees, and logistic regression, achieved lower accuracies ranging from 69% to 97%.
Cancer is a wide category of diseases that is caused by the abnormal, uncontrollable growth of cells, and it is the second leading cause of death globally. Screening, early diagnosis, and prediction of recurrence give patients the best possible chance for successful treatment. However, these tests can be expensive and invasive and the results have to be interpreted by experts. Genetic algorithms (GAs) are metaheuristics that belong to the class of evolutionary algorithms. GAs can find the optimal or near-optimal solutions in huge, difficult search spaces and are widely used for search and optimization. This makes them ideal for detecting cancer by creating models to interpret the results of tests, especially noninvasive. In this article, we have comprehensively reviewed the existing literature, analyzed them critically, provided a comparative analysis of the state-of-the-art techniques, and identified the future challenges in the development of such techniques by medical professionals.
Virtual learning environment (VLE) is vital in the current age and is being extensively used around the world for knowledge sharing. VLE is helping the distance-learning process, however, it is a challenge to keep students engaged all the time as compared to face-to-face lectures. Students do not participate actively in academic activities, which affects their learning curves. This study proposes the solution of analyzing students’ engagement and predicting their academic performance using a random forest classifier in conjunction with the SMOTE data-balancing technique. The Open University Learning Analytics Dataset (OULAD) was used in the study to simulate the teaching–learning environment. Data from six different time periods was noted to create students’ profiles comprised of assessments scores and engagements. This helped to identify early weak points and preempted the students performance for improvement through profiling. The proposed methodology demonstrated 5% enhanced performance with SMOTE data balancing as opposed to without using it. Similarly, the AUC under the ROC curve is 0.96, which shows the significance of the proposed model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.