The insertion of an implant in the body of a patient raises the risk of a posterior infection and formation of a biofilm, which can have critical consequences on the patient’s health and be associated with a high sanitary cost. While antibacterial agents can be used to prevent the infection, such a strategy is time-limited and causes bacteria resistance. As an alternative to biochemical approaches, we propose here to use light-induced local hyperthermia with plasmonic nanoparticles. This strategy is implemented on surgical meshes, extensively used in the context of hernia repairing, one of the most common general surgeries. Surgical meshes were homogeneously coated with gold nanorods designed to efficiently convert near-infrared light into heat. The modified mesh was exposed to a biofilm of Staphylococcus aureus (S. aureus) bacteria before being treated with a train of light pulses. We systematically study how the illumination parameters, namely fluence, peak intensity and pulse length, influence the elimination of attached bacteria. Additionally, fluorescence confocal microscopy provides us some insight on the mechanism involved in the degradation of the biofilm. This proof-of-principle study opens a new set of opportunities for the development of novel disinfection approaches combining light and nanotechnology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.